A survey on Graph Deep Representation Learning for Facial Expression Recognition - CRISTAL-FOX
Communication Dans Un Congrès Année : 2024

A survey on Graph Deep Representation Learning for Facial Expression Recognition

Résumé

This comprehensive review delves deeply into the various methodologies applied to facial expression recognition (FER) through the lens of graph representation learning (GRL). Initially, we introduce the task of FER and the concepts of graph representation and GRL. Afterward, we discuss some of the most prevalent and valuable databases for this task. We explore promising approaches for graph representation in FER, including graph diffusion, spatio-temporal graphs, and multi-stream architectures. Finally, we identify future research opportunities and provide concluding remarks.
Fichier principal
Vignette du fichier
Article CBMI - final.PDF (560.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04768316 , version 1 (05-11-2024)

Identifiants

  • HAL Id : hal-04768316 , version 1

Citer

Théo Gueuret, Akrem Sellami, Chaabane Djeraba. A survey on Graph Deep Representation Learning for Facial Expression Recognition. International Conference on Content-based Multimedia Indexing, Sep 2024, Reykjavík, Iceland. ⟨hal-04768316⟩
23 Consultations
21 Téléchargements

Partager

More