Multi-fidelity constrained Bayesian optimization, application to drone design - GDR I-GAIA
Communication Dans Un Congrès Année : 2021

Multi-fidelity constrained Bayesian optimization, application to drone design

Optimisation Bayésienne multi-fidélité sous contraintes, application au design de drone.

Résumé

Abstract. In aeronautics, the first design stages usually involve to solve a constrained multi-disciplinary optimization problem. The Bayesian optimization strategy is a way to solve such a complex system. This approach requires to evaluate the objective function and the constraints quite a few times. Evaluations are generally performed using numerical models that can be computationally expensive. To alleviate the overall optimization cost variable information sources can be used to make the evaluations. Typically we are dealing with cheap low fidelity models to explore the design space and expensive high fidelity models for exploitation. In the following work, a mono-fidelity Bayesian optimization method and its multi-fidelity counterpart are compared on two analytical test cases and on an aerostructural drone design constrained optimization problem. The multi-fidelity strategy allows to divide the computational cost by 1.3 compared to the mono-fidelity one on these test cases
Fichier principal
Vignette du fichier
article_CAID_2021_modif_aout_23.pdf (1002.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03891316 , version 1 (09-12-2022)
hal-03891316 , version 2 (10-02-2023)
hal-03891316 , version 3 (01-03-2023)
hal-03891316 , version 4 (17-08-2023)

Identifiants

  • HAL Id : hal-03891316 , version 4

Citer

Rémy Charayron, Thierry Lefebvre, Nathalie Bartoli, Joseph Morlier. Multi-fidelity constrained Bayesian optimization, application to drone design. Conference on Artificial Intelligence for Defense CAID, Direction Générale de l’Armement (DGA), Nov 2021, Rennes, France. ⟨hal-03891316v4⟩
305 Consultations
103 Téléchargements

Partager

More