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Perspectives on algorithmic normativities:
engineers, objects, activities

Jérémy Grosman2 and Tyler Reigeluth1

Abstract

This contribution aims at proposing a framework for articulating different kinds of ‘‘normativities’’ that are and can be

attributed to ‘‘algorithmic systems.’’ The technical normativity manifests itself through the lineage of technical objects.

The norm expresses a technical scheme’s becoming as it mutates through, but also resists, inventions. The genealogy of

neural networks shall provide a powerful illustration of this dynamic by engaging with their concrete functioning as well

as their unsuspected potentialities. The socio-technical normativity accounts for the manners in which engineers, as

actors folded into socio-technical networks, willingly or unwittingly, infuse technical objects with values materialized in

the system. Surveillance systems’ design will serve here to instantiate the ongoing mediation through which algorithmic

systems are endowed with specific capacities. The behavioral normativity is the normative activity, in which both organic

and mechanical behaviors are actively participating, undoing the identification of machines with ‘‘norm following,’’ and

organisms with ‘‘norminstitution’’. This proposition productively accounts for the singularity of machine learning algo-

rithms, explored here through the case of recommender systems. The paper will provide substantial discussions of the

notions of ‘‘normative’’ by cutting across history and philosophy of science, legal, and critical theory, as well as ‘‘algo-

rithmics,’’ and by confronting our studies led in engineering laboratories with critical algorithm studies.

Keywords

Machine learning, technical normativity, socio-technical normativity, Gilbert Simondon, neural networks, behavioral

normativity

This article is a part of special theme on Algorithmic Normativities. To see a full list of all articles in this special

theme, please click here: https://journals.sagepub.com/page/bds/collections/algorithmic_normativities.

Introduction

It is generally agreed upon that ‘‘algorithmic systems’’
implementing machine learning techniques have signifi-
cant normative effects upon the ways items are recom-
mended and consumed, the ways choices are taken and
justified. However, the aspect and extent of those
‘‘normative effects’’ are subject to much disagreement.
Some claim that ‘‘algorithmic systems’’ significantly
affect the way norms are conceived and instituted.
Others maintain that algorithmic systems are actually
black boxing more traditional normative processes
(Diakopoulos, 2013). The problem partly lies in
accounting for the different kinds of ‘‘normativities’’
that are, and can be attributed to, ‘‘algorithmic sys-
tems.’’ Our paper proposes a substantial discussion of

‘‘algorithmic normativities’’ by accounting for the prac-
tices we witnessed in diverse engineering laboratories
and by confronting literature in sociology, history and
philosophy of technology (see for instance Beer 2017
and Ziewitz 2016). Before going any further let us
begin by providing working definitions of ‘‘algorithm’’
and ‘‘norm,’’ the value of which should be measured by
the conceptual and practical relations they give rise to
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when thinking about, or interacting with, algorithmic
systems.

From an engineering standpoint, algorithms can be
helpfully approached as stabilized and formalized com-
putational techniques that scientists and engineers rec-
ognize and manipulate as an object throughout a
variety of disparate inscriptions (e.g., formalized expres-
sions, diagrammatic representations, coded instruc-
tions, traces of executions) and through a variety of
disparate actions (e.g., formal proofs, intuitive manipu-
lations, material implementations, concrete experimen-
tations). Computational techniques only become
algorithms when calculators find it useful to stabilize
and formalize them (see Hill, 2016). Two further fea-
tures must be added to make sense of what engineers
commonly call ‘‘algorithms.’’ First, algorithms are, for
most computer scientists, objects about which know-
ledge can be produced and communicated. Second,
algorithms are, for most software engineers, things
likely to be recognized in many different systems. In
other words, to warrant the qualification of algorithm,
a stabilized and formalized computational technique
needs to possess, and be invested with, a certain signifi-
cance within a certain practice (Pickering, 1995).

From a generic standpoint, vital, social or technical
norms can be approached either as a description of a
range of events, or as a prescription for a range of
actions—it has convincingly been argued that, in most
cases, these descriptive and prescriptive meanings
cannot be satisfactorily disentangled (Canguilhem,
1943; Putnam, 2002). Three features should be empha-
sized. First, a norm expresses a relation between a set of
disparate changes—social norms, for instance, typically
describe or prescribe ways of behaving within specific
situations. Second, a norm reveals itself when individ-
uals are propelled to contrast their ways of behaving
with others’—again, social norms typically manifest
themselves whenever individuals experience specific
situations as being problematic or conflictual. Third,
a norm is both instituted and followed—social norms
are typically instituted as the solution to a collective
experience of a problematic or conflictual situation.
The notions of ‘‘normativity’’ and ‘‘normalization,’’
to which we will hereafter refer, denote the processes
through which an activity, respectively, comes to insti-
tute or to follow specific norms.

The following pages further investigate how distinct
kinds of normativities come into play through these
socio-technical assemblages we call algorithmic
systems.

. The first section exposes some of the minute actions
through which engineers willingly or unwittingly
infuse technical systems with social norms. The
design of a surveillance system will serve to unfold

the ongoing mediations (e.g., collecting data, defin-
ing metrics, establishing functions) that allow engin-
eers to normalize the behaviors of algorithmic
systems (e.g., how algorithms improve their ability
to discriminate between threatening and nonthrea-
tening behaviors).

. The second section shows how successive changes in
algorithms’ structures and operations reveal distinct
kinds of technical normativities—be they schematic,
formal or material. A liminal genealogy of artificial
neural networks shall provide a powerful illustration
of this dynamic by engaging with their concrete
functioning as well as their unsuspected potential-
ities (e.g., how the invention of optimization
algorithms or parallel processors considerably trans-
formed these networks).

. The third section proposes to conceive of learning
machines as exhibiting a genuine social or behavioral
normativity, insofar as their activities can be seen as
exhibiting both ‘‘norm following’’ and ‘‘norm insti-
tuting’’ processes. The case of recommender systems
shall allow us to identify markers around which
these two processes seem to irremediably entangle
(e.g., the intractability, the randomness, and the
interactivity of algorithmic systems’ behaviors).

The conceptual focus of the paper does not dispense
us from indicating the empirical sources thanks to
which we ground our developments. The surveillance
system’s empirical material derives mainly from ethno-
graphic data collected between 2012–2015 and 2016–
2019 while participating in two Research and
Innovation projects (e.g., consortium meetings, inter-
views with engineers, laboratory visits). The neural net-
work’s empirical material is chiefly informed by
readings of original technical literature (Rosenblatt,
1962), contemporary technical literature (Bishop,
2006; Mitchell, 1997) and published historical accounts
(McCorduck, 1983; Crevier, 1993; Olazaran, 1993;
Pickering, 2010). The recommender system’s material
freely draws upon knowledge acquired along an empir-
ical study following a computational experiment on
recommender systems conducted between 2016 and
2017, as well as of the consultation of other more
traditional resources such as scientific literature and
technical blogs.

Socio-technical normativity and
surveillance system

The recent applications of machine learning techniques
in assisted and automated decision-making raise hopes
and concerns. On the one hand, there are hopes about
the possibility to have an informational environment
tailored to specific ends or the possibility to increase a
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firm’s commercial revenues. On the other hand, there
are concerns about the inconsiderate discriminations
machine learning results might conceal or the unprece-
dented possibilities for governing ushered in by these
techniques. Such concerns appear to be exacerbated by
the patent difficulties to hold beings accountable, either
because the responsibility of the decision is not attrib-
utable in any straightforward way, whether to an algo-
rithmic system or to a moral person, or because the
understanding of processes leading to case-specific deci-
sions is threadbare (Burrell, 2016).

We propose to address these key issues by identify-
ing sites that are crucial for engineers’ representations
and interventions as they negotiate encounters between
social imperatives and technical constraints (see Bijker
et al., 1987; McKenzie and Wajcman, 1985). Two such
sites have been identified: the metrics’ definition and the
databases’ collection.1 Each respectively enables engin-
eers to evaluate and design their algorithmic systems.
For the most part, our claims are grounded in empirical
inquiries we undertook over the last five years, within
different research groups. The material collected consists
of observations, discussions, interviews, and reports.
Thus, our first task is to describe the actions through
which engineers produce algorithmic systems following
specific socio-technical norms as well as the actions
through which engineers produce knowledge about
their algorithms’ behaviors. One case study in particular,
the ‘‘Privacy Preserving Protection Perimeter Project,’’
will illustrate the matters discussed.2

Funded by the European Commission between 2012
and 2015, this European ‘‘Research and Innovation’’
Project gathered a dozen private companies, research
universities, and public institutions with the aim of
designing a system able to automatically detect
threatening behaviors. This rather abstract endeavour
inevitably concealed multiple concrete technical chal-
lenges, the most predominant of which were the com-
bination of visual and thermal cameras with microwave
and acoustic sensors, as well as the development of
robust and efficient detection, tracking and classifica-
tion algorithms (i.e. working in real-time within uncon-
trolled environments). The consortium rapidly pinned
down two ‘‘use cases’’ that would put them to work: a
Swedish nuclear power plant (the Oskarshamns
Kraftgrupp AB) and a Swedish nuclear waste storage
facility (the Centralt mellanlager för använt kärn-
bränsle). The task impelled the engineers to undertake
a socio-technical inquiry enabling them to spell out the
various qualities with which users (i.e. the security
workers) expected the system to be endowed.3

Understandably, the security workers expected the
system to maintain the number of false alarms below
a certain threshold—otherwise the system would end
up disorganizing the perimeter surveillance instead of

organizing it. The project’s partners usually reframe the
requirement in slightly more technical terms: they want
to minimize the number of ‘‘false positives’’ (i.e. when
a behavior is mistaken as threatening) and ‘‘false
negatives’’ (i.e. when a behavior is mistaken as
nonthreatening). The engineers then translate the
socio-technical requirements into fairly simple and
intuitive mathematical expressions, called metrics,
that set standards for attributing numerical values to
different aspects of the system’s behaviors, aspects that
are deemed particularly important and that can
be empirically observed (Dewey, 1939; Porter, 1996).
The matter thus lies in understanding how the
human-based act of surveilling through categorization
can be transformed into a machine-based problem of
classification.

The very notions of ‘‘false positive’’ or ‘‘false nega-
tive’’ suppose that an algorithm-based classification can
be compared to, and overturned by, a human-based
classification. This human-based classification, acting
as the reference norm against which all machine-
based classifications are to be evaluated, is called the
ground truth dataset (Jaton, 2017). The ‘‘dataset’’ part
here refers to an ensemble of recorded scenes, each con-
taining as many numerical sequences as there are avail-
able sensors (i.e. visual videos, thermal frames, sound
recordings, and Doppler time-series). It provides the
system with concrete instances of an abstract classifica-
tion problem. These instances consist of actual scenes
the algorithm must assign to its ‘‘correct’’ category
(i.e. threatening or nonthreatening). The ‘‘ground
truth’’ part refers to the categories or labels which
humans—e.g. domain experts, computer scientists or
Amazon turkers—have attributed to each sequence. It
supplies the system with answers to the problem: the
algorithm now has an external check for assessing the
correctness of its classification.

How are these ground truth datasets concretely con-
stituted? Constituting relevant datasets for algorithmic
systems presents a genuine socio-technical challenge.
Building on their socio-technical inquiry—which
involves reading regulations, visiting sites, and inter-
viewing workers—the engineers envisioned scenarios
that would seek to encompass the range of threatening
and inoffensive behaviors the system was expected to
handle (e.g., a jogger running near the nuclear power
plant, a boat rapidly approaching the waste storage
facility, a truck driving perpendicular to one of the
site’s fences, etc.). The engineers then gathered on two
occasions, each time for about a week, to enact and rec-
ord the norms scripted in their scenarios (Figure 1). The
scene itself is worth visualizing: engineers awkwardly
running through an empty field sprinkled with cables
and sensors, mimicking the threatening or inoffensive
behaviors they want their algorithms to learn.
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Returning to their laboratories, they spent a consider-
able amount of time annotating each frame of each
sequence produced by each sensor, e.g. circling
moving bodies, labeling their behaviors, etc.4

With their metrics defined and their data collected,
engineers can, at last, train their algorithms, i.e. lead
them to embody socio-technical norms, and evaluate
them, i.e. measure relevant dimensions of their activ-
ities. The training process usually implemented first
requires engineers to load and initialize the algorithm
they wish to train (e.g., support-vector machine,
random forest, artificial neural networks, etc.) on
their laboratory’s computer clusters. They then run a
script which, as shown in Figure 2, (i) supplies the algo-
rithm with a batch of scenes which algorithms are asked
to classify (i.e. classification), (ii) compares the algo-
rithm’s guesses with the ground truth (e.g., evaluation),
and (iii) modifies a number of the algorithm’s param-
eters to improve the ways it reacts to specific videos (i.e.
correction)—before iterating back to (i) until the train-
ing dataset is emptied.

We have argued here—against growing claims that
contemporary machine learning practices and tech-
niques are progressively slipping through our
hands—that approaches combining empirical and crit-
ical perspectives are likely to provide us with the means
to productively engage with engineering practices, while
also opening up possibilities of critique and interven-
tion. The argument essentially rested on two claims. On

the one hand, the ‘‘metrics,’’ which mathematically
express the system’s socio-technical norms, equip
engineers with a way of assessing the comparative
values of different algorithms. On the other hand, the
‘‘ground truth dataset,’’ which comprises the actual and
possible instances the system is supposed to handle,
provides engineers with local norms for telling the algo-
rithm how to learn in specific instances. In both cases,
the norms are instituted by the engineers and are
expected to be followed by the machines. We believe
that by identifying two distinct sites where engineers

Figure 1. Personal sketch of the data collection field observed in United Kingdom in June 2014.

Figure 2. Personal sketch of a slide used by Robin Devooght

on June 2017.

4 Big Data & Society



decisively mediate between social and technical con-
straints, we can productively transform the demands
we place on algorithmic systems and provide robust
indications as to where to intervene in critical cases in
which normative conflicts and problems arise.5

Technical normativity and artificial
neural networks

Therecentcrazesurrounding ‘‘machine’’or ‘‘deep’’ learn-
ing is usually explained in terms of ‘‘available data’’ (i.e.
infrastructural changes made data collection accessible),
‘‘algorithmic advances’’ (i.e. technical changesmadedata
processing possible) or ‘‘economic promises’’ (i.e. appli-
cations will make data particularly valuable). In focusing
on the algorithmic advances, the following paragraphs
propose to further explore three kinds of norms (imagi-
nal, mathematical, and material) algorithms manifest
whenever engineers attempt to endow them with specific
capacities.Thegenealogyofartificial neuralnetworks—a
subset of ‘‘machine learning’’ techniques whose applica-
tions may be seen in surveillance systems (see ‘‘Socio-
technical normativity and surveillance system’’ section)
aswell as recommender systems (see ‘‘Behavioral norma-
tivityandcollaborativefiltering’’ section)—will shed light
on the technical norms algorithms impose on engineering
practices.Beforeunfolding the technical transformations
artificial neural networks underwent, we will briefly
sketch their inception.

The earliest trace of the artificial neural network
scheme can be found in a technical report authored
by the American psychologist Frank Rosenblatt
(Rosenblatt, 1962) when based at the Cornell
Aeronautical Laboratory. By that time, several
researchers were interested in exploring the nature of
learning processes with the embryonic tools of auto-
mata theories. Distinctively, Rosenblatt decided to
address the problem of learning processes by both
investigating neurophysiological systems and construct-
ing intelligent machines. Artificial neural networks
would eventually emerge from these projects exploring
‘‘natural’’ and ‘‘artificial’’ learning, as the blueprint of a
machine capable of ‘‘perceiving’’ and ‘‘recognizing’’
visual patterns, as a machine capable of ‘‘learning’’ to
differentiate between geometrical forms. Thus, a neural
image of intelligence gradually turned into concrete
technical objects that would later be programmed for
the IBM 704 and hardwired as the MARK I.6

It has been convincingly argued that the singularity
of technical objects is best grasped through the schemes
describing their operations within different environ-
ments, rather than the uses to which they are subject
or the practicalities of their actualization (Simondon,
1958: 19–82). Thus, the singularity of artificial neural
networks lies in their technical scheme, rather than the

general regression, classification or clustering purposes
they serve, or their specific implementations in Python’s
Theano or TensorFlow libraries. A technical scheme
describes the parts composing the technical object and
relates their operations within the technical object’s
functioning (Polanyi, 1966: 38–40). Most schemes are
constructed from material traces (objects, descriptions,
diagrams, etc.) by technicians or historians interested in
thinking about, and intervening upon, specific technical
objects.

In the case of artificial neural networks, the scheme
always couples the algorithm to an environment
(Figure 3). In Rosenblatt’s design, light sensors allow
the network to capture signals from its environment
that end up being classified and light emitters enable
the network to display the results of its classifications.
Crucially, Rosenblatt articulated the artificial neural
network and its environment with a genuine feedback
mechanism, which would work as an experimental con-
troller for correcting the emitter’s output until it pro-
duced the desired response.

The artificial neural network’s scheme consists of
two main parts: neural units and synaptic edges (see
Figure 4). Each neural unit receives an incoming
signal and produces an outcoming value—the neurons

Figure 3. Diagram of artificial neural network within an

environment.

Figure 4. Diagram of the parts composing artificial neural

networks.
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generally contain numerical parameters (i.e. the bias)
and share an activation function. Each synaptic edge
connects two separate neural units—the synapses gen-
erally contain numerical parameters (i.e. the weight).
The question now is how these parts interact.

The first operation is prediction. It typically moves
from left to right and leaves the network unchanged
(see Figure 5). A cascade of operations combines the
input signal and the network’s parameters (i.e. syn-
apses’ weights and neurons’ biases) in order to produce
specific output values—depending on the problem,
the signal is classified as ‘‘triangle’’ or ‘‘circle,’’ as
‘‘threatening’’ or ‘‘nonthreatening,’’ etc.

The second operation is learning. It typically moves
from right to left and alters the network’s parameters
(see Figure 6). A cascade of operations compares the
outputs’ values (i.e. the datasequence the algorithm
classified) and the ground truth information (i.e. the
sequence data the engineer annotated) in order to
update and correct the network’s parameters (i.e. syn-
apses weights and neurons’ biases).

More than a mere description encompassing differ-
ent but related technical objects, this technical scheme
opens a field of possible manipulations for engineers,
ranging from minor modifications (How many neu-
rons? How many synapses? etc.) to major modifica-
tions, which lead to new lineages of artificial neural
networks (What if the neurons’ activation function
changes? What if peculiar synaptic connections are

allowed? etc.). Thus, technical schemes are always
both objectal and imaginal (Beaubois, 2015). If tech-
nical objects ‘‘have a life of their own,’’ to borrow
Ian Hacking’s (1983: 262–275) words, the problem
then lies in accounting for their schemes’ becoming,
as it mutates through but also resists, successive inven-
tions (Leroi-Gourhan, 1945; Simondon, 1958: 19–82).
The following paragraphs briefly sketch two other epi-
sodes neural networks went through between the early
1950s and the late 2000s, further illustrating this
dynamic of invention and resistance.

The experimental, mathematical, and commercial
successes of artificial neural networks rested upon
their ability to adjust synapses’ weights and neurons’
biases in order to recognize incoming patterns—i.e. to
learn to classify. However, the limitations of early arti-
ficial neural networks rapidly became apparent and
problematic (see Olazaran, 1993: 347–350). The
single-layer artificial neural networks proved incapable
of solving important families of problems, e.g. they
could not learn to recognize resized or disconnected
geometrical patterns (Rosenblatt, 1962: 67–70). On
the other hand, learning capacities of multilayer artifi-
cial neural networks appeared to depend more on
engineering skills than on their intrinsic qualities, e.g.
there existed no procedure guaranteeing that the learn-
ing would converge (see Olazaran, 1993: 396–406).
These combined limitations to algorithmic learning
capacities are traditionally seen as the onset of a signifi-
cant drop in financial and scientific interest in artificial
neural networks and artificial intelligence.

It was not before the mid-1980s that a satisfying
learning rule, named ‘‘backpropagation,’’ would
be identified for multilayer artificial neural net-
works—more or less simultaneously and independently
by Paul Werbos, David Rumelhart, and Yann Le Cunn
(Olazaran, 1993: 390–396). In a nutshell, the learning
algorithm measures the difference between the net-
work’s and the environment’s responses (i.e. error func-
tion); it then computes the relative contribution of each
synapse and neuron to the measured error (e.g., chain
rule’s partial derivatives); and finally updates the syn-
apses’ weights and neurons’ biases so as to reduce the
overall error. The learning problem is thus recast as an
optimization problem, in which the main objective is to
minimize classification errors. Backpropagation’s
mathematical scheme significantly extended artificial
neural networks’ problem-solving capacities.

Thereafter, in the late 1980s multilayer artificial
neural networks gave rise to interesting applications in
areas such as natural language processing, handwriting
recognition, etc. (Olazaran, 1993: 405–411). However,
the computational resources required during the learn-
ing phases quickly presented a significant impediment:
depending on the number of layers, on the size of the

Figure 5. Diagram of the prediction’s operation in artificial

neural networks.

Figure 6. Diagram of the learning’s operation in artificial neural

networks.
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datasets and on the power of the processors, it could
take up to several weeks to find weights and biases mini-
mizing classification errors. Thus, the applications using
artificial neural networks did not stand out from other
machine learning algorithms (e.g., ‘‘k-nearest neigh-
bors,’’ ‘‘random forests,’’ ‘‘support vector machines,’’
‘‘matrix factorization’’). Their more recent prolifer-
ation—often referred to as ‘‘deep learning’’—appears
to be intimately tied to advent and generalization of
massively parallel processing units.

In the late 1990s, Nvidia Corporation, one of the
largest hardware developers and manufacturers for
video games, equipped their graphic cards with speci-
fic-purpose processors. Contemporary video games typ-
ically involve large-scale mathematical transformations
that can be performed in parallel, e.g. the changing
values of the millions of pixels displayed on our screens
are usually processed simultaneously, instead of being
calculated sequentially. In the late 2000s, researchers in
computational statistics and machine learning revealed
the mathematical affinities shared by the graphical
operations in video games and the learning operations
in pattern recognition. Indeed, both involved countless
matricial calculations that could be distributed over
several processing cores and executed independently.
This rapid outline indicates the extent to which material
developments brought forth or actualized latent algo-
rithmic capacities.

Thus far, our approach has emphasized three kinds
of technical norms algorithms impose on engineering
practices. The first has to do with the algorithm’s imagi-
nal affordances in relation to the development of
technical systems—in this case, a single abstract repre-
sentation of neural processes brought about multiple
lineages of algorithms. The second deals with the math-
ematical properties of the algorithm’s structures and
operations—in this case, the invention of a convergent
algorithm significantly extended the abilities of multi-
layer artificial neural networks. The third bears on the
interplay between material constraints and computa-
tional possibilities—in this case, the advent of
Graphical Processing Units transformed the range of
problems algorithms can solve. Thus, the genealogy
of artificial neural networks led us not only to a con-
crete account of algorithmic processes, but more
importantly still, to a comprehensive understanding of
the imaginal, mathematical and material dynamics that
drive their technical becoming.

Behavioral normativity and
collaborative filtering

It is generally observed that computers blur an
entrenched ontological dichotomy between two kinds
of beings: living organisms and automated machines

(see Fox-Keller, 2008; 2009). Kant’s far-reaching con-
ception of self-organization famously epitomizes the
matter at stake: organisms’ norms are thought to be
intrinsic to their activities—organisms are, in this
sense, ‘‘norm-instituting’’ beings—and machines’
norms are thought to be extrinsic to their activities—-
machines are, in this sense, ‘‘norm-following’’ beings
(Barandiaran and Egbert, 2014). The most convincing
conceptual markers grounding this longstanding
dichotomy are generally to be found in the widely
shared reluctance to attribute ‘‘problems’’ and
‘‘errors’’ to behaviors exhibited by machines, com-
puters, and algorithms (Bates, 2014). Thus, technical
errors are usually thought to be rewritable either as
engineering failures or socio-technical problems (see,
respectively, Canguilhem, 1943; Turing, 1948).

Contemporary algorithmic systems appear to fur-
ther complicate any a priori partitions between dis-
tinctively organic and machinic behaviors. Indeed,
learning machines are, to a certain extent, capable of
modifying their structures so as to respond to modifi-
cations in their milieu without any specific human
interventions. In this regard, they are often seen as
exhibiting a form of behavioral plasticity, which was
long held to be distinctive of organic activity. The
minute operations followed by learning machines
and the effects they produce, currently remain
beyond satisfactory understandings. As such, there is
an aspect of what they do that is intractable, that lies
beyond our current capacities of prediction and con-
trol. This section further investigates these underdeter-
mined behaviors and suggests that both the human and
algorithmic aspects of machine learning systems need
to be approached as genuinely behaving, that is as
performing together norm-following and norm-insti-
tuting activities.

The case of collaborative filtering recommender sys-
tems deployed on commercial platforms such as
YouTube or Netflix can help us ground these consider-
ations (Seaver, 2018). In a nutshell, these systems seek
to foster unprecedented interactions between items and
users by looking at past interactions between similar
items and users. Practically speaking, the metrics
deployed for evaluating the performances of such sys-
tems generally attempt to measure different aspects of
user engagement and the data collected for training
these algorithmic models largely consists of user inter-
action histories. The concrete processes, which are to a
large extent unscripted, remain difficult to explain, even
retrospectively, for the engineers who designed the
algorithms. The dynamics of imitation and variation
performed on these platforms need to be conceived,
we argue, as a social activity, involving an interactive
and iterative process between the users’ and the algo-
rithms’ behaviors.7
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The distinction between norm-instituting and norm-
following can be further understood as a difference
between two processes of determination. Most technical
entities, it has been argued, exhibit a relative ‘‘margin of
indetermination’’ that makes them more or less recep-
tive to ‘‘external information’’ and responsive in terms
of ‘‘internal transformations’’ (see Simondon, 1958:
134–152), e.g. the progressive wear and tear of a bolt
connecting metal parts allows for their mutual adjust-
ment, an engine’s governor constantly regulates the
train’s speed despite changes of load and pressure, a
warehouse logistically adapts to a changing book
order, a recommender system responds to newly
received interactions. The distinction between norm-
instituting and norm-following can thus be reframed
as a distinction between two kinds of determination: a
determination will be said ‘‘convergent’’ or ‘‘divergent’’
depending on whether it restricts or expands the behav-
ioral variability of a technical entity. Both empirically
and conceptually speaking, the difficulty thus lies in
being able to account for the divergent determinations
of certain machine learning processes.

In this light, the singularity of machine learning
applications should be understood in terms of the rela-
tive significance of the margin of indetermination
exhibited. Indeed, in most machine learning applica-
tions, the behavior of the algorithmic system (i.e. the
specific predictions displayed) may be periodically trans-
formed (i.e. the values of the model are updated)
depending on the relevant incoming information (i.e.
particular sets of data). By and large, engineering work
is dedicated to restraining the recommender system’s
variations—instituting metrics, defining error functions,
cleaning datasets—and aligning them with the compa-
nies’ interests. On the one hand, the determinations of
learning may be seen as converging toward rather spe-
cific pre-instituted norms. However, the actual learning
process, as Adrian Mackenzie (2018: 82) has argued, has
more to do with stochastic function-finding than with
deterministic function-execution—the resulting model
corresponds to one among many possible configurations
(see also Mackenzie 2015). Thus, and on the other hand,
the concrete determinations of the system’s behavior can
hardly be seen as converging toward any pre-instituted
norms.8

Let us take a closer look at the actual processes
that unfold when producing recommendations.
Collaborative filtering techniques typically seek to
achieve a delicate balance between sameness (always
recommending similar items) and difference (only rec-
ommending different items) solely by looking at and
drawing on patterns of interactions between users and
items. The collaborative machines—that may well be
instantiated by many different techniques, such as k-
nearest neighbors, matrix factorization, neural

networks—are usually interpreted by recommendation
engineers as capable of producing models that represent
actual relations and suggest potential relations between
users and items. More concretely, each learning step
supposes that the error function (also called loss or
objective function) measures the recommendation’s
quality and that the correction algorithm (e.g., back-
propagation) adjusts the model’s parameters accord-
ingly. We can now, with these developments in mind,
rework the problem with which we opened the section:
error as a marker for thinking the human–machine
distinction.

If, indeed, the very process of learning rests on the
possibility of erring (Vygotsky, 1978), we propose, fol-
lowing David Bates (Bates and Bassiri, 2016; see also
Malabou, 2017), to seize both entangled senses in which
erring may be understood: erring as ‘‘behaving in unex-
pected ways’’ (i.e. errancy), and erring as ‘‘susceptible
of being corrected’’ (i.e. error). In both cases, erring
supposes that a relation between an individual and an
environment be experienced as problematic, that the
norms instantiated within behavioral performances
are experienced as only certain ones among many pos-
sible others. The passage from error to errancy depends
on recognizing social activity as open-ended enough for
error to appear not only as the mere negation of a
norm, but rather as the affirmation of a different
norm. We would like to suggest, here, that a more cau-
tious look at learning processes could help us frame
these algorithmic systems as erring within a broader
social activity, in this instance: the algorithmic produc-
tion of cultural tastes.

Two remarks should suffice here to pin down what is
at stake. First, the overall learning process is open-
ended: although each learning step stops when the
model’s parameters minimize error and overfitting,
the overall learning process consists of an indefinite
sequence of learning steps, which are periodically
picked up again once there is enough fresh data from
incoming interactions. Second, the recommendations
are ‘‘moving targets’’ (Hacking, 1986): the learning pro-
cess is shaped by interactions as much as it shapes inter-
actions, i.e. recommender systems learn and produce
interactions. We therefore contend that the iterativity
and interactivity of recommending activities are
grounds for conceiving classification operations per-
formed by recommender systems as targeting both cer-
tain user behaviors as well as certain algorithmic
predictions. The dynamic of these ‘‘looping kinds’’
(Hacking, 1986), brings recommendation, as a social
activity, closer to errancy than error. Indeed, what
would it even mean from this perspective to produce
a false recommendation?

The algorithmic system can therefore be seen as
genuinely behaving, that is as performing an
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algorithmic activity exhibiting its own form of norma-
tivity. The behavioral normativity, once the notion of
behavior is released from individualized moorings and
reconnected with the social activity within which it
unfolds, can be productively conceived as a dynamic
of norm following and norm institution—rather than
the instantiation of social norms within technical
ensembles (i.e. socio-technical normativity) or the
instantiation of technical norms through acts of inven-
tion (i.e. technical normativity). In this specific case, the
recommender system needs to be conceived as a social
partner behaving within a determined social activity:
their behaviors bear social significance and affect the
value of other behaviors.

Thus, the notion of behavioral normativity leads us
to reconsider how the redistributions of norm-following
and norm-instituting behaviors between humans and
machines actively reshape social activities. We might
ask then: ‘‘What is learning and where is learning
occurring within the behavioral distributions of a
given activity?’’ In doing so, the primary focus or
locus of analysis is productively displaced toward the
unfolding of social activities, thereby indefinitely
deferring the quest to reveal the ‘‘true norms’’ that
inform algorithmic systems (e.g., ‘‘we are manipulated
by algorithms’’) or social systems (e.g., ‘‘algorithms
are biased’’). We can now better attend to what it
means and why it matters for machine learning algo-
rithms to behave in unforeseen and unexpected ways,
thus opening the prospect that they become sites of
normative invention. We hope, in this way, to have
contributed to the concerted efforts that need to be
made to integrate algorithmic behaviors into the field
of action it analyzes by offering conceptual and meth-
odological tools for claiming their effects. Our conten-
tion is that one way of addressing this challenge lies in
showing how this normativity makes sense within
culture.

The tension experienced by most people when con-
fronted with technical systems can, in part, be under-
stood in terms of the difficulties they have in
experiencing and making sense of how, where, and
when machine behaviors perform with ours. The cul-
tural images of technical systems have traditionally
allowed us to stabilize the perceptive and motor antici-
pations determining our relationships with them,
e.g. the individual body performing with a simple tool
or the industrial ensemble organizing human and
machine labor (Simondon, 1965-1966; Leroi-Gourhan,
1965). The problems, in the case of learning machines,
are tied to the variable distributions of human and
machines behaviors (Collins, 1990: 14) and to the
unfamiliar ability algorithmic systems have of institut-
ing norms. The tension can thus in part be reframed as
the problem of understanding these behaviors in

relation to the social activities within which they
unfold and that they take part in shaping.

The concept of behavioral normativity foregrounds
the importance of social activity and the afferent
margin of indetermination it allows behaviors to
inform. If there is no room left for error, then all behav-
iors that do not execute or follow the established, pro-
grammed norm will be disregarded or repressed as
useless or inefficient. If, on the other hand, those behav-
iors that do not perform as expected are attributed
value and attended to, they can participate in institut-
ing a new norm-following dynamic. Thereby, machine
learning forces us to reconsider long standing divides
between machines’ and organisms’ behaviors, between
those behaviors that repeat and those that invent
norms. Our conceptual proposition invites alternative
and more demanding normative expectations to bear
on engineering and design practices whereby the
margin of indetermination of an algorithmic system
would be increased rather than reduced.

Conclusion

The overall aim of this paper was to approach algorith-
mic normativities in a different light, with different
questions in mind, with different norms in sight.

The first investigation into socio-technical normativ-
ity showed how engineering practices come to stabilize
and embed norms within certain systems by setting up
plans or programs for learning machines to execute
(metrics, ground truth dataset, optimization function).
The socio-technical perspective, although a necessary
starting point, is insufficient if taken in and of itself.
Indeed, it demands that we be able to define what is
‘‘social’’ and what is ‘‘technical’’ within a given system,
and how their given normativities come to be
entangled. In this light, we proposed to qualify social
and technical normativities in terms of operations they
perform, rather than properties they possess.

This led us to look at different algorithmic systems
from the standpoints both of their technical operations
and their social or behavioral activities. The section on
notion of technical normativity sketched the mutations
of an algorithm’s technical scheme and exposed how
its norms both induce and resist invention, thereby
granting technical objects imaginal, mathematical or
material consistencies. The final section on behavioral
normativity allowed us to consider certain conditions
(indetermination, divergence, errancy) under which an
algorithm can be seen as taking part in the norm-fol-
lowing and norm-instituting dynamics that characterize
social activities.

This normative pluralism can help understand how
contemporary algorithmic systems, comprised of mul-
tiple structures and operations, simultaneously fulfill
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engineering aims, express technical resistances and par-
ticipate in ongoing social processes. Generally speaking
we can advance that:

. the aims engineers pursue always depend upon cer-
tain algorithmic capacities, in this sense algorithmic
techniques normalize engineering practices (i.e. the
objective function always depends on an efficient
learning rule);

. the socio-technical system’s behavior is subject to
engineering aims that normalize its learning activity
(i.e. the metrics and the ground truth datasets deter-
mine what counts as an error);

. the algorithmic system’s learning processes unfold
genuine norm instituting behaviors (i.e. the system’s
outputs periodically affect the very activities that
have to be learned).

The value of our approach lies in its ability to pro-
vide a nuanced account of what is too often presented
as one opaque, impenetrable or ethereal system.
Algorithmic systems must instead be seen, we argue,
as inhabited by normative tensions—between technical,
socio-technical, and behavioral normativities. We
sketched this pluralism with specific practical and the-
oretical problems in mind. No doubt others would be
led to explore different normativities pervading algo-
rithmic systems. Our effort has largely consisted in
showing that behind each ‘‘norm-following’’ instance
there is an institution, and conversely, that every insti-
tution requires its norms to be performed, to be played
out, even at the risk of them being transformed by their
very performance.
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Notes

1. We do not claim that these sites are the only sites where

social and technical normativity are entangled—one could

also consider: (i) the choice of the relevant features (i.e.

that select and neglect what counts as a relevant informa-

tion, such as speed, trajectories or colors); (ii) the choice of

the objective function (that determine the learning by pro-

viding a computational metric); (iii) the choice of the

machine learning algorithm (that constrains the kind of

things to be learned, such as sets or series).
2. The two inquiries, particularly relevant to the argument

presented here, were led in the course of another two

European ‘‘Research and Innovation’’ initiative, respect-

ively, titled ‘‘Privacy Preserving Protection Perimeter

Project’’ (2013–2016) and ‘‘Pervasive and User Focused

Biometrics Border Project’’ (2016–2019). The data col-

lected, during these projects, consisted of minutes of con-

sortium meeting, attendance to demonstrations, as well as

30 semi-directed interviews with engineering partners.

Grosman J (2018) Ethical and social issues, ‘‘Technical

Report in the frame Pervasive and User Focused

Biometrics Border Project’’ (PROTECT). The most read-

able general introduction to machine learning is undoubt-

edly Mitchell (1997). Bishop’s (2006) textbook is also an

invaluable resource. The course given by Andrew Ng

(2011) at Stanford is an equally good place to start.

3. To give a more concrete sense of the specific challenges

that need to be overcome: the system needed to remain

indifferent to weather variations (e.g., Swedish snow,

fog, and sun) as well as to the surrounding fauna (e.g.,

squirrels, rabbits, foxes, moose, etc.).
4. The ‘‘data collection’’ happens to be of tremendous

importance not only, from the perspective of the power

plant and waste facility’s staffs, for getting the system to

work correctly, but also, from the perspective of engineers

working in computer vision, for getting standard datasets

against which to compare their algorithms—mainly: pro-

viding benchmarks and organizing competitions.
5. Considering just one short example showing some conse-

quences of our approach to the so-called opacity and

unaccountability of algorithmic systems, the problems of

algorithmic discrimination can be constructively reap-

praised as the problems of (i) characterizing the suspected

social discrimination, (ii) constructing metrics likely of

measuring such discrimination (and ruling out inconsider-

ate algorithms), and (iii) spelling out requirements that

datasets must meet to avoid such discriminative

consequences.
6. The empirical material concerning the genesis of neural

networks builds on an extensive reading of the existing

historical literature: McCurdock (1983), Olazaran (1993),

Kay (2001), Pickering (2010), Cardon et al. (2018) as well
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as selected readings of the primary literature: Rosenblatt

(1962). The contemporary literature provides valuable

technical details, see for example the short presentation

in Mitchell (1997), the more substantial treatment in

Bishop (1995) and the online course given by Geoffrey

Hinton for Toronto University dedicated to neural net-

work and available on the Coursera platform in 2012.

For a more general overview of the period, see for instance

Heims (1991) and Edwards (1996).
7. The most relevant textbooks are Francesco Ricci, Lior

Rokach, Bracha Shapira and Paul B. Kantor (2011) and

Aggarwal (2016). The annual proceedings of the ACM

conference on Recommender Systems provide an invalu-

able overview of the public and private research conducted

in recommender systems. Netflix’s or Spotify’s technical

blogs, as well as the less official blogs of their employees,

give invaluable insights into recommendation practices.

The account is also informed by an empirical inquiry, led

between 2016 and 2018, during which we documented a

series of computational experiments attempting to uncover

the capacities of recurrent neural networks for predicting

sequence of interactions for the offline version of a collab-

orative filtering based recommender problem.

8. This argument rests on the rather reasonable assumption

that the empirical learning of machines cannot be com-

pletely reduced to the mathematical convergence of a func-

tion, the role of which is to find the extremal values of

another function—minimization in the case of what is

called error or loss function, maximization in the case of

what is called objective function.
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Beaubois V (2015) Un schématisme pratique de l’imagination.

Appareil, 16.
Beer D (ed.) (2017) Information, Communication and Society

special issue: The Social Power of Algorithms 20(1).
Bijker WE, Hughes T and Pinch TJ (1987) The Social

Construction of Socio-Technical Systems: New Directions

in the Sociology and History of Technology. Cambridge:

Massachusetts Institute of Technology Press.
Bishop CM (1995) Neural Network for Pattern Recognition.

Oxford: Oxford University Press.
Bishop CM (2006) Pattern Recognitions and Machine

Learning. New York: Springer.
Burrell J (2016) How the machine ‘thinks’: Understanding

opacity in machine learning algorithms. Big Data &

Society 1–12.

Canguilhem G (1943) Essai sur quelques problèmes concernant
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