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Abstract: Drawing behaviour in children provides a unique window into their cognitive 17 

development. This study uses Convolutional Neural Networks (CNNs) to examine cognitive 18 

development in children's drawing behavior by analyzing 386 drawings from 193 participants, 19 

comprising 150 children aged 2 to 10 years and 43 adults from France. CNN models, enhanced 20 

by Bayesian optimization, were trained to categorize drawings into ten age groups and to 21 

compare children’s drawings with adults'. Results showed that model accuracy increases with 22 

the child's age, reflecting improvement in drawing skills. Techniques like Grad-CAM and 23 

Captum offered insights into key features recognized by CNNs, illustrating the potential of deep 24 

learning in evaluating developmental milestones, with significant implications for educational 25 

psychology and developmental diagnostics. 26 
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Introduction 30 

 31 

In children, drawing behaviour appears around the age of 18 months-old. During a 32 

lifetime, drawing is an important mode of communication driven not only by cognitive aspects 33 

but also by cultural ones. For instance, by utilising human figure representations in drawings, 34 

[1] demonstrated variations in body size and shape among young adults from Israel and 35 

Thailand when asked to depict themselves. Similarly, through analysing drawings created by 36 

children from different cultures, Restoy and colleagues [2] showcased how the level of 37 

individualism in countries could influence the size and number of human figures depicted. Of 38 

course, culture is not the sole factor influencing drawing behaviour and numerous cognitive 39 

aspects have been explored through it. Luquet [3] firstly suggested that the development of the 40 

drawing behaviour can be seen as a four-stage process. The first stage occurs when the child 41 

lacks intention to represent reality and discovers by chance a shape analogy between an object 42 

and its initially nonsignificant trace (fortuitous realism). Around four or five years old, the child 43 

tries to produce realistic drawings but does not have the entire abilities (motor and 44 

representative skills) to do so (missed realism). Then, the child uses her knowledge of objects’ 45 

components to represent them but some misconceptions linked for example to transparency or 46 

perspective representation are still present (intellectual realism). Eventually, the last stage 47 

proposed by Luquet [3] is visual realism, when every step is completed.  48 

Since, many other developmental theories on drawing behaviour have been proposed. 49 

For example, Adi-Japha and colleagues [4] proposed three different steps in the development 50 

of drawing behaviour in children. First, action representation occurs when the drawing is 51 

associated with verbalisation. For example, when the child represents a moving object like a 52 

car or a train and produces the corresponding sound. Romancing occurs when the child is able 53 

to name her drawing but it remains challenging for another individual to interpret it. Then, the 54 



guided elicitation phase occurs when the child is able to produce a figurative drawing helped 55 

by an adult. Thus, Adi-Japha and collaborators [4] focused on how the drawing is produced 56 

better than the drawing as a result. On the other hand, Baldy [5] proposed a classification only 57 

based on the morphological development of the human figures in the drawing (e.g. tadpoles, 58 

filiform figures, tube-shaped, etc.). Doing so, Baldy’s classification appears more focused on 59 

the drawing as a product and then, is close to Luquet’s classification.  60 

Even if all these developmental theories are relevant and not intrinsically exclusive, they 61 

consider different concepts and focused on different aspects of the drawing behaviour: its 62 

process and its result. Without forgetting that it may be difficult to visually interpret the 63 

corresponding stage for a given drawing. Traditionally, drawings are analysed by defining and 64 

extracting a set of features such as the number and size of figures or the number of used colours, 65 

etc. While this approach can be insightful, two challenges arise. First, the amount of information 66 

contained in a drawing is substantial in nature, and using predefined features significantly limits 67 

the amount of extracted information. Then, as each of these feature focuses on a single aspect 68 

of the drawing, this approach does not consider the holistic aspect of drawings (i.e. considering 69 

drawing as a whole, and not only its different parts). Moreover, studies in toddlers showed that 70 

their drawings may have some meanings even if they do not have figurative aspects on it [6,7]. 71 

For these reasons, such methods may not be sufficient to benefit from the information contained 72 

in a drawing to its fullest extent. A possible way to mitigate these issues is to ask children about 73 

what they intended to represent. However, they may not be directly conscious about the deep 74 

meaning of their drawing, and this could not be applied to scribbles drawn by very young 75 

children who are not able to verbally communicate yet or children with pathologies that make 76 

them unable to communicate. 77 

To minimise these biases, a potential candidate is the use of artificial intelligence and 78 

more precisely deep learning. Over the past decade, important advances in deep learning models 79 



(neural networks) have been made when considering images, video or audio processing, 80 

substantially improving the predictive accuracy and outperforming state-of-the-art methods in 81 

many fields, such as system health management [8], face recognition [9], or even speech 82 

recognition [10]. The most popular type of deep learning models is Convolutional Neural 83 

Networks (CNNs) [11], which is known to provide a high accuracy for tasks involving image 84 

analyses. While CNNs architecture can vary according to the task, some key concepts remain. 85 

Different types of layers exist in CNN and play different roles. In convolutional layers, a 86 

convolution is applied on the image: a filter, representing a feature, slides over the image, and 87 

results in a feature map. Each value of the feature map is the degree of activation of the filter 88 

on the corresponding part of the image. Depending on the depth of the convolutional layers, 89 

filters can detect either low-level features (e.g. lines or curves) or high-level features (e.g. 90 

objects). 91 

While such models usually provide a high accuracy, they are widely considered as black 92 

boxes with regard to the decision-making process [12,13], as it is not possible to straightly 93 

understand the process that led the model to predict a particular output. Indeed, the complexity 94 

and number of parameters that can attain billion, make such models difficult to interpret. 95 

However, from this complexity also comes a strength. Deep learning models allow for 96 

analysing every pixel of a given image, extracting a large amount of information contained in 97 

it, and can therefore potentially grasp all the relevant features. The features learning produced 98 

by neural networks are also complex, and allow for an objective feature representation. 99 

Although deep learning has already been successfully used to analyse drawings [14–100 

17], even in children [18,19]; the development of the drawing behaviour has been, to our 101 

knowledge, only poorly analysed through the lens of deep learning [20–23].  102 

In this paper, we first build and train a CNN by using Bayesian optimisation to classify 103 

drawings according to the age of the individuals (i.e. 10 age categories, from children to adults). 104 



By using the same method, we then trained multiple models to classify children subcategories 105 

versus adults’ drawings to compute the accuracy and predict drawings not belonging to the 106 

classes considered in the models. We hypothesised that the accuracy of the models should 107 

increase with the age difference between children and adults. Indeed, as children grow, their 108 

drawing skills improve and their drawings become closer to what an adult could produce.  109 

 110 

Material and methods 111 

a. Dataset 112 

The data consist of 386 drawings produced by 150 children (from two to ten years-old) and 113 

43 adults (novice and experts) (detail in Table S1). All the participants were given a touch-114 

screen displaying a white background and could choose among a panel of ten colours by having 115 

access to an overlay on the bottom of the screen. Examples of drawings are shown in Figure 1. 116 

From three years-old to adults, the drawings were collected using the following protocol. Each 117 

participant was asked to produce two drawings, one under a free condition, where the 118 

participant was not given a particular instruction, and one under a self-portrait condition, where 119 

the drawer was asked to draw himself. Two categories of adults were defined prior to the data 120 

collection. First, a group of adults who had never taken drawing classes and did not have 121 

drawing as a hobby, that will be here considered as novices. Then, an expert category, including 122 

art school students and professional illustrators. The data distribution is presented in Table S1. 123 

For more information about these datasets, please refer to [24]. 124 

As two-year-old participants were not verbally able to communicate and to understand 125 

the instructions, no particular task was given for these productions. For this reason, they will be 126 

considered as produced in free condition. In this category, 6 subjects participated and produced 127 

a total number of 30 drawings, ranging from 3 to 8 drawings per individual (respectively 3, 4, 128 

4, 5, 6, 8 drawings). 129 



All drawings were of dimensions 2732 × 2048, and were resized to a 224 × 224 square 130 

with 3 channels for the colours to conduct analyses. 131 

 132 

b. Ethics 133 

We ensured the confidentiality of drawings collected from human participants, adhering 134 

strictly to the ethical guidelines of our research institutions. The study received approval from 135 

the Strasbourg University Research Ethics Committee (Unistra/CER/2019-11). Informed 136 

consent was secured from all adult participants and from a parent or legal guardian for minors. 137 

Additionally, consent for the publication of any identifying images in an online open-access 138 

format was obtained, safeguarding participant privacy and adhering to ethical standards for 139 

research. 140 

 141 

c. Transfer learning from deep learning 142 

To analyse the development of the drawing behaviour through the age, we compared 143 

drawings from different age categories. To do so, we used deep learning, and more precisely 144 

transfer learning. Transfer learning is a method used in machine learning and consists in using 145 

the knowledge of an already trained model for another task [25]. This technique is particularly 146 

useful for small datasets, which is the case here. For this reason, we also used data 147 

augmentation, more particularly horizontal flips, as this transformation does not distort the 148 

image and the result remains realistic. For this study, we used the architecture of VGG19 [26] 149 

pretrained on the ImageNet dataset [27], as VGG models have already been widely used for 150 

drawing analyses [20,28]. VGG19 is a CNN consisting of 16 convolutional layers and 3 fully 151 

connected layers. The last fully connected layer was removed, as the ImageNet classes are not 152 

of interest in this study.  153 



By using VGG19 architecture and ImageNet weights, we first trained a model with 10 154 

classes (i.e. the age categories). The architecture of all models is described below. Then, to 155 

refine these analyses, we considered, for children only, new age categories by grouping each 156 

class with the following one. For example, drawings produced by 3 and 4 years-old are gathered 157 

in a new category called ‘3–4 years-old’, drawings produced by 4 and 5 years-old will be in a 158 

new category called ‘4–5 years-old’, thus approximately doubling the number of drawings per 159 

category. This process was done up to and including 10 years-old. Novices and experts’ 160 

drawings were independently grouped in a new category simply called ‘adults’, in order to 161 

compare drawings from children to those of adults. To do so, we trained 7 models, each 162 

classifying drawing from a following pair of children’s categories against the adults’ drawings. 163 

We did exactly the same protocol with ResNet18 model [29]. ResNet18 is a model from the 164 

Residual Network (ResNet) family consisting of 18 layers. We obtained results with ResNet18 165 

similar to the ones of VGG19. Codes and scripts are available on Github: 166 

https://github.com/cedricsueur/drawinganalyses. 167 

 168 

d. Bayesian optimization 169 

For the training, we independently built models and tuned hyperparameters. Multiple 170 

strategies exist to find the best architecture and hyperparameters. For example, grid search 171 

consists in defining a set of vectors for each hyperparameter and training a model for every 172 

possible combination. Another possibility is a random search, taking into account the fact that 173 

hyperparameters may not all have the same impact. 174 

Here, we used Bayesian optimisation, a technique using the information of past evaluations 175 

to iteratively find the best combination from a given parameters space. The model is first trained 176 

with a set of parameters subjectively defined by the user. This method then allows for using 177 

prior knowledge (i.e. the knowledge of the past trials) to select a new set of parameters that are 178 



expected to improve the accuracy. The number of iterations of this process is defined 179 

beforehand. 180 

The architecture of our model is based on VGG19, which takes an image with a (224,224,3) 181 

shape as input. Before flattening the result of the last convolution, we considered 3 pooling 182 

options through the Bayesian optimisation process: average pooling, max pooling, or no 183 

pooling. After flattening, we considered a dropout layer through Bayesian optimisation, with a 184 

value between 0 and 0.4 and a step (i.e. the smallest meaningful distance between two values) 185 

of 0.1, potentially followed by a Batch Normalisation layer. Then, from 1 to 3 fully connected 186 

layers are added, each containing from 32 to 512 units with a step of 32, each followed by a 187 

relu activation. The last fully connected layer is eventually followed by the classification layer 188 

using sigmoid function and binary crossentropy loss. The learning rate is also optimised 189 

between 1e-5 and 1e-1 through log sampling with stochastic gradient descent (SGD) optimiser. 190 

The tuner is running on 50 trials (i.e. testing 50 different combinations of parameters) to 191 

minimise the validation loss. For each trial, the model is trained on 15 epochs, with a batch size 192 

varying from 16 to 64 with a step of 16.80% of the data are used for the training and 20% for 193 

validation, with an early stopping if the validation accuracy did not improve for the last 3 194 

epochs. Once all the trials have been evaluated, the optimal parameters are saved. The best 195 

architecture with the best hyperparameters is then trained 10 times to compute the validation 196 

accuracy and finally the mean validation accuracy for each model. To assess the relative 197 

importance of colours, the same procedure was conducted after converting the images into 198 

grayscale. 199 

 200 

e. Predictions matrices 201 

To assess the similarity across different age groups in our study, we employed a methodical 202 

approach by generating prediction matrices for each model. This process involves calculating 203 



the average prediction values for age categories that do not directly correspond to the predefined 204 

classes of the model. Specifically, we utilise the sigmoid function in each model to generate a 205 

probability score between 0 and 1, where drawings by children are systematically labelled as 0 206 

and those by adults as 1. We adopt a threshold of 0.5 to differentiate between these categories: 207 

a prediction score above 0.5 indicates that the model categorises the drawing as an adult’s work, 208 

whereas a score below 0.5 suggests it belongs to a child. This threshold-based approach allows 209 

us to gauge the model’s confidence in its predictions. For instance, in a model differentiating 210 

between drawings by 3-4-year-olds and adults, a score nearing 0 denotes high confidence in 211 

identifying the drawing as child-produced (specifically, by the 3–4 years age group). 212 

Conversely, a score approaching 0.5 signifies uncertainty in classification, indicating the 213 

model’s difficulty in distinguishing between the age groups. While it is common to evaluate 214 

model accuracy by examining predictions within the model’s designated classes, analysing 215 

predictions for drawings outside these classes offers additional insights. For example, analysing 216 

how a model, trained to differentiate between 3-4-year-olds and adults, predicts the age 217 

category of a drawing made by a 10-year-old child can provide valuable information. Such an 218 

analysis not only helps in understanding the model’s perceptual boundaries between age groups 219 

but also offers a quantitative perspective on its classification behaviour across a broader 220 

spectrum of ages, thereby enriching our understanding of the model’s interpretive capabilities. 221 

 222 

f. Explicability 223 

In our method, we also employed Captum, a model interpretability library for PyTorch, 224 

alongside Grad-CAM for explicability purposes. Deep learning models are known to be very 225 

efficient for image classification, however, most models remain as black boxes, and 226 

disentangling features which played a role in the classification remains a challenging task. This 227 

complexity arises from the difficulty in interpreting such models, as highlighted in recent 228 



studies [15]. In the present case, it is of interest to understand which features were 229 

discriminative. However, given that a significant proportion of drawings are nonfigurative, 230 

directly answering this question proves to be challenging. Instead, a viable approach involves 231 

examining the regions of the images that played an important role in the classification. 232 

To this end, Grad-CAM [30] offers a powerful method. For any given image, Grad-CAM 233 

generates a heatmap that highlights the regions important for a specific class. This becomes 234 

particularly insightful when applied to the predicted class to discern why the model categorised 235 

the input image as belonging to this class. The algorithm computes the gradient using the 236 

activation of the last convolutional layer, which captures high-level features, for a given class. 237 

Integrating Captum [31] into this workflow enhances the explicability further by 238 

providing a comprehensive toolkit for model interpretability. Captum supports various 239 

interpretability algorithms, including Grad-CAM, allowing researchers to not only visualise 240 

important regions but also understands the attribution of each input features to the model’s 241 

output. By applying Captum’s Grad-CAM visualisations on the validation data for every model, 242 

we can gain deeper insights into the discriminative features recognised by the models. This 243 

integration facilitates a more nuanced understanding of model predictions, particularly in 244 

complex cases where direct interpretation of features is not straightforward. 245 

 246 

Results 247 

a. 10-classes model 248 

The optimal model for classifying drawings across ten age categories achieved the 249 

accuracy of 40%, as illustrated in the confusion matrix presented in Figure 2. This performance 250 

significantly surpasses the 10% accuracy expected from a model making predictions at random. 251 

Although the presence of a diagonal in the confusion matrix indicates correct classifications, a 252 

considerable number of drawings were incorrectly predicted by the model to belong to ages 253 



other than their true categories. To enhance our understanding of the model’s performance and 254 

address its limitations, we delved deeper into the analysis of the model. This involved 255 

examining the patterns and characteristics of the misclassifications to identify potential areas 256 

for improvement and gain insights into the model’s decision-making process. 257 

To gain deeper insights into the distinctions between our age groups, we trained models 258 

to differentiate between drawings made by adults and those made by children of various age 259 

categories. The selection of the optimal models was facilitated through Bayesian optimisation, 260 

with the chosen parameters and their mean accuracy detailed in Table S2. This mean accuracy 261 

was derived from the validation accuracy of the optimal model, which was trained ten times. 262 

The performance of models trained on grayscale drawings is specifically outlined in Table S3. 263 

An interesting trend observed is the decrease in model accuracy with increasing age for both 264 

RGB and grayscale models, as depicted in Figure 3. Notably, the grayscale models generally 265 

exhibit higher mean accuracy than their RGB counterparts, with the exception of the model for 266 

the 3–4 years old category. The models exhibit a strong capability to distinguish between the 267 

drawings of 2-3-year-old children and those of adults. However, this differentiation accuracy 268 

diminishes progressively as the age increases, eventually stabilising at a plateau for the 269 

drawings produced by children in the 5-7-year-old age group. This suggests that while the 270 

models are highly effective at identifying the distinctive characteristics of very young children’s 271 

drawings compared to those of adults, the differences become less pronounced or harder to 272 

detect in the artwork of older children, particularly those aged 5 to 7 years. This plateau 273 

indicates a point where the models no longer significantly improve in distinguishing between 274 

the drawings of children in this age range and adults, reflecting a nuanced challenge in capturing 275 

the gradual development of drawing skills as children grow older. 276 

 277 

b. Models by pair 278 



Further analysis involved predicting the age categories between children and adults to 279 

compute the mean prediction for each model and class. The outcomes of these predictions are 280 

illustrated in Figure 4 for both RGB and grayscale models, along with an example interpretation 281 

of the matrices. To remind, we employed probability score ranging from 0 to 1, where a score 282 

of 0 represents approximation to drawings made by younger children and a score of 1 283 

corresponds to drawings more similar to those made by adults. On the other hand, a score near 284 

the midpoint of 0.5 reveals a level of ambiguity, showing the model’s challenge in clearly 285 

separating the artworks by these age groups. In the prediction matrices for RGB images, the 286 

first row illustrates that all mean predictions surpass the 0.5 threshold, indicating that drawings 287 

made by children aged from 4 to 10 years more closely resemble those made by adults than 288 

those of the 2-3-year-old category. Notably, in this first row and subsequent ones, the mean 289 

prediction values for each specific age group rise in conjunction with the age of the predicted 290 

category, from younger children to adults, offering a quantitative measure of the development 291 

of drawing skills. For example, the mean prediction value for 4-year-olds is 0.67, suggesting 292 

their drawings are more adult-like than those of 2-3-year-olds, as 0.67 significantly exceeds 0.5. 293 

Conversely, in the model for 3-4-year-olds, the prediction for 5-year-olds is 0.54, barely 294 

distinguishable from a random classification since this value hovers near 0.5. Focusing on the 295 

transition from drawings by 2-3-year-olds to those by adults, stabilisation in mean prediction 296 

values is observed from ages 7 to 10 years, as opposed to the notable increase observed from 4 297 

to 7 years. This might indicate a plateau in the evolution of drawing skills within this age range. 298 

For models analysing children from 4 to 5 years old and older, the prediction values 299 

approximate 0.5, highlighting challenges in differentiating drawings, which may suggest a 300 

convergence in drawing styles. The model focusing on 5-7-year-olds indicates stabilisation, 301 

with mean prediction values approaching 0.5. This suggests that drawings by children aged 8 302 

to 10 years are perceived as similarly adult-like to those by 5-7-year-olds. In the final two 303 



models, which compare children’s drawings to those of 7–8 and 8-9-year-olds, predictions fall 304 

below 0.5 for the 8–9 and 9-10-year-old categories, potentially indicating a slowdown in the 305 

development of drawing behaviour from ages 7 to 10. Based on these observations of prediction 306 

value increases, stabilisation, and their positions relative to the 0.5 uncertainty threshold, we 307 

can delineate three stages in drawing: 2 to 4 years old, about 4 to 7 years old, and above 7 years 308 

old. 309 

 310 

c. Interpretability models 311 

Grad-CAM (Gradient-weighted Class Activation Mapping) and Captum, tools for 312 

model interpretability, were specifically applied to the validation datasets to investigate what 313 

features the VGG19 and ResNet18 convolutional neural networks (CNNs) identify and utilise 314 

to characterise and classify drawings. The interpretability of the Grad-CAM outputs varies 315 

significantly across different models and is also influenced by the representativeness of the 316 

drawings under examination, as illustrated in Figure 5 and Figure 6. 317 

This variability is particularly evident when comparing the analysis of figurative 318 

drawings to that of non-figurative ones. In the case of figurative art, it is relatively 319 

straightforward to discern what the model recognises as key features, such as faces or eyes. 320 

However, for non-figurative drawings, which lack clear representational content, it becomes 321 

challenging to understand what aspects of the drawing are being recognised and how these 322 

contribute to the classification decision. Furthermore, even when specific elements like 323 

rainbows or flowers are identified within a drawing, it remains unclear how the CNNs interpret 324 

these elements in the context of classifying the drawings. 325 

A manual evaluation of the interpretability models, specifically analysing their 326 

performance through Grad-CAM heatmaps and Captum pixel attributions, revealed that 72% 327 

of human faces in drawings were accurately recognised as faces. This indicates that the models 328 



tend to focus more intensely on the areas depicting faces in drawings that contain them, as 329 

demonstrated by more pronounced heatmaps or pixel attributions in these regions. However, 330 

this assessment is inherently subjective, reflecting the inherent challenges in quantifying model 331 

interpretability. The models encountered difficulties in accurately identifying faces under 332 

certain conditions: when multiple faces appear within a single drawing, when faces are 333 

intertwined or merged with other lines or shapes, or when the drawings include animal faces. 334 

These challenges likely stem from the training dataset’s composition, predominantly featuring 335 

self-portraits that contain a single, clearly delineated human face.  336 

 337 

Discussion 338 

Drawings have long been recognised as a reflective mirror to the inner workings of the 339 

human mind, especially in children. Yet, the interpretation of these drawings by adults, whether 340 

experts or not, may not always align with the child’s original intent. This discrepancy 341 

underscores the potential for bias, particularly when interpretations rely on subjective judgment 342 

rather than objective or mathematical definitions [24,32,33]. In response to this challenge, we 343 

advocate for the adoption of novel and objective methodologies capable of decoding the rich 344 

tapestry of information encapsulated within drawings [15]. Our research harnesses the power 345 

of deep learning to navigate the complex landscape of children’s and adults’ drawings, offering 346 

new insights into the evolution of drawing behaviour across different ages. 347 

The initial model, tasked with categorising drawings into ten distinct age groups, 348 

achieved 40% accuracy, far surpassing the 10% expected from random guesswork. However, 349 

the preponderance of drawings classified by mistake as belonging to 7-year-olds suggests an 350 

anomaly likely attributed to the model’s internal ‘black box’ mechanics rather than to any 351 

tangible psychological or developmental rationale. By adopting a paired comparison approach, 352 

we found that models distinguishing between the youngest children (2 and 3 years old) and 353 



adults were particularly effective, achieving accuracy rates exceeding 85%. This accuracy 354 

diminishes with age, plateauing around 60% for models comparing 7 and 8-year-olds to adults–355 

a trend that intuitively mirrors the increasing sophistication of children’s drawings at this age. 356 

Intriguingly, converting images to grayscale improved accuracy across almost all models, with 357 

the notable exception of the 3-4-year-old category, where colour appears to play a pivotal role 358 

in the expressiveness of drawings, possibly serving as a tool for exploration rather than 359 

representation [24]. Our analysis further may identify three potential stages within the 360 

prediction matrices, representing the trajectory of drawing behaviour. This stage not only 361 

corroborate previous findings [4,7,34] but also may offer a potential framework for 362 

understanding the progression from scribbles to more sophisticated artistic expressions, 363 

aligning with established theories like those proposed by Luquet [3]. 364 

The interpretability of deep learning models [35,36], especially when examined through 365 

the lenses of Grad-CAM and Captum, presents a complex landscape that is as varied as it is 366 

intriguing. These tools, designed to provide a window into the ‘thought processes’ of neural 367 

networks, generate heatmaps or pixel graphs that can sometimes clearly demarcate the features 368 

deemed important by the model, such as human faces in drawings. This capability is 369 

remarkable, suggesting that, to some extent, models are capable of ‘seeing’ and prioritising 370 

elements in images that humans also find significant. This endeavour could be significantly 371 

advanced by increasing the sample size and refining the models’ ability to identify specific 372 

facial features such as eyes, nose, mouth, etc. [2,5,37]. Enhancing the granularity with which 373 

the models recognise and interpret these elements could lead to a deeper understanding of the 374 

nuanced ways in which neural networks process visual information, offering more detailed 375 

insights into their interpretive capabilities. However, the clarity and utility of these heatmaps 376 

are not uniform across all types of drawings. When these interpretability tools are applied to 377 

non-figurative drawings that do not directly represent visible objects or scenes–their output 378 



often becomes cryptic. This enigmatic nature of the heatmaps in such contexts highlights a 379 

fundamental challenge in artificial intelligence: understanding how deep learning models 380 

process and interpret abstract visual content. Unlike figurative productions, where the presence 381 

of recognisable shapes and forms can guide the interpretation of heatmaps, nonfigurative ones 382 

lack these anchors, making the model’s focus and decision-making process harder to decipher. 383 

This variability in interpretability underscores a broader issue within the field of AI–384 

despite the advanced capabilities of neural networks, their decision-making processes can 385 

sometimes be as opaque as they are sophisticated [13,38–40]. The challenge lies not only in 386 

achieving high accuracy in tasks such as drawing classification but also in making these 387 

processes transparent and understandable. This is particularly crucial when AI is used in 388 

domains where understanding the ‘why’ behind decisions is as important as the decisions 389 

themselves. Moreover, even with we got respectable results to classify drawings according to 390 

age, the discrepancy in heatmap’s clarity between figurative and non-figurative drawings raises 391 

questions about the training of these models. Neural networks learn to prioritise certain features 392 

over others based on the datasets on which they are trained. If these datasets are predominantly 393 

composed of figurative images, the models may develop a bias towards recognising and 394 

interpreting features that are present in such images, at the expense of understanding more 395 

abstract, nonfigurative content. This suggests that diversifying training datasets to include a 396 

broader range of artistic expressions could be key to enhancing model interpretability across a 397 

wider spectrum of drawings. 398 

Furthermore, the interpretability challenge also points to the need for developing more 399 

sophisticated tools and techniques that can provide deeper insights into the workings of neural 400 

networks. As the field of AI continues to evolve, the quest for models that are not only accurate 401 

but also interpretable will likely remain a central theme, driving advancements in technology 402 

and methodology. Moreover, factors such as the emotional state and motivation of the child, as 403 



well as the conditions under which the drawings were produced, can introduce variability into 404 

our analysis. Despite these challenges, ensuring uniform conditions across all age groups helps 405 

mitigate potential biases, suggesting that future research protocols could benefit from a more 406 

controlled drawing environment. To further refine our models and enhance their predictive 407 

accuracy, we propose expanding the scope of our trials and exploring alternative architectural 408 

frameworks. Additionally, comparing machine-generated classifications with human 409 

judgments could provide valuable insights into the interpretability and applicability of these 410 

models in real-world contexts. 411 

In conclusion, our research highlights how deep learning models can classify even with 412 

some difficulties drawings across age groups. Work still has to be done but this is an important 413 

methodological step in our understanding of drawing behaviour. Indeed, AI and more 414 

particularly deep learning can now be considered as a new tool in our pre-existing drawing 415 

comprehension ‘tool box’ including other devices as fractals, PCA, etc. [15]. This allows new 416 

perspectives of interdisciplinary work and underscores the potential of deep learning to uncover 417 

the subtle nuances of human expression and perception. Indeed, such approach could 418 

revolutionise in the diagnosis of mental health conditions, such as depression [41,42] and 419 

developmental disorders like autism [43,44], by providing nuanced insights into patients’ 420 

mental states through their drawings. Also, our findings offer a new lens to understand how 421 

human cultures and societies influence drawing behaviour and vice versa [1,2,45]. Eventually, 422 

deep learning could enrich discussions on how drawing - and by extension art - may reflect 423 

societal values and experiences. We hope our study paves the way for future explorations into 424 

the multidimensional expression that is drawing. 425 

 426 

Acknowledgements 427 

We thank the school director and the teachers who gave us access to their classrooms, proving 428 

their interest in our research project. We are grateful to all the participants and to the parents of 429 



all the children, who accepted with enthusiasm to contribute to our study. Thanks also to Sarah 430 

Piquette, who provided help regarding the ethical components of this project.  431 

 432 

Funding 433 

This study was made possible with funding support from PNRIA and MITI (80Prime), which 434 

facilitated the research process and enabled the investigation to be conducted effectively. 435 

 436 

Data availability: Codes and scripts are available on 437 

https://github.com/cedricsueur/drawinganalyses. Data is available on Zenodo: 438 

https://doi.org/10.5281/zenodo.11097174 439 

 440 

 441 

 442 

 443 

References 444 
[1] B. Binson, D.J. Federman, R. Lev-Wiesel, Do Self-Figure Drawings Reveal the Drawer’s 445 

Cultural Values? Thais and Israelis Draw Themselves, Journal of Humanistic Psychology (2019) 446 
0022167819831082. https://doi.org/10.1177/0022167819831082. 447 

[2] S. Restoy, L. Martinet, C. Sueur, M. Pelé, Draw yourself: How culture influences drawings by 448 
children between the ages of two and fifteen, Frontiers in Psychology 13 (2022) 940617. 449 

[3] G.-H. Luquet, Le dessin enfantin.(Bibliothèque de psychologie de l" enfant et de pédagogie.)., 450 
(1927). 451 

[4] E. Adi-Japha, I. Levin, S. Solomon, Emergence of representation in drawing: The relation 452 
between kinematic and referential aspects, Cognitive Development 13 (1998) 25–51. 453 

[5] R. Baldy, Dessin et développement cognitif, Enfance 57 (2005) 34–44. 454 
[6] M.V. Cox, Children’s drawings of the human figure, Psychology Press, 2013. 455 
[7] N.H. Freeman, Drawing: Public instruments of representation., (1993). 456 
[8] S. Khan, T. Yairi, A review on the application of deep learning in system health management, 457 

Mechanical Systems and Signal Processing 107 (2018) 241–265. 458 
https://doi.org/10.1016/j.ymssp.2017.11.024. 459 

[9] O.M. Parkhi, A. Vedaldi, A. Zisserman, Deep Face Recognition, in: Procedings of the British 460 
Machine Vision Conference 2015, British Machine Vision Association, Swansea, 2015: p. 41.1-461 
41.12. https://doi.org/10.5244/C.29.41. 462 

[10] M.D. Hassan, A.N. Nasret, M.R. Baker, Z.S. Mahmood, Enhancement automatic speech 463 
recognition by deep neural networks, Periodicals of Engineering and Natural Sciences 9 (2021) 464 
921–927. https://doi.org/10.21533/pen.v9i4.2450. 465 

[11] R. Chauhan, K.K. Ghanshala, R. Joshi, Convolutional neural network (CNN) for image detection 466 
and recognition, in: IEEE, 2018: pp. 278–282. 467 

[12] T. Lei, Z. Shi, D. Liu, L. Yang, F. Zhu, A novel CNN-based method for question classification 468 
in intelligent question answering, in: 2018: pp. 1–6. 469 

[13] R. Shwartz-Ziv, N. Tishby, Opening the black box of deep neural networks via information, 470 
arXiv Preprint arXiv:1703.00810 (2017). 471 

[14] B. Beltzung, M. Pelé, J.P. Renoult, M. Shimada, C. Sueur, Using Artificial Intelligence to 472 
Analyze Non-Human Drawings: A First Step with Orangutan Productions, Animals 12 (2022) 473 
2761. https://doi.org/10.3390/ani12202761. 474 

https://github.com/cedricsueur/drawinganalyses
https://doi.org/10.5281/zenodo.11097174


[15] B. Beltzung, M. Pelé, J.P. Renoult, C. Sueur, Deep learning for studying drawing behavior: A 475 
review, Front. Psychol. 14 (2023) 992541. https://doi.org/10.3389/fpsyg.2023.992541. 476 

[16] S.-Y. Chen, P.-H. Lin, W.-C. Chien, Children’s Digital Art Ability Training System Based on 477 
AI-Assisted Learning: A Case Study of Drawing Color Perception, Front Psychol 13 (2022) 478 
823078. https://doi.org/10.3389/fpsyg.2022.823078. 479 

[17] A. Philippsen, Y. Nagai, A predictive coding account for cognition in human children and 480 
chimpanzees: A case study of drawing, IEEE Trans. Cogn. Dev. Syst. (2020) 1–1. 481 
https://doi.org/10.1109/TCDS.2020.3006497. 482 

[18] N. Ali, A. Abd-Alrazaq, Z. Shah, M. Alajlani, T. Alam, M. Househ, Artificial intelligence-based 483 
mobile application for sensing children emotion through drawings, Studies in Health Technology 484 
and Informatics 295 (2022) 118–121. 485 

[19] L. Kissos, L. Goldner, M. Butman, N. Eliyahu, R. Lev-Wiesel, Can artificial intelligence achieve 486 
human-level performance? A pilot study of childhood sexual abuse detection in self-figure 487 
drawings, Child Abuse & Neglect 109 (2020) 104755. 488 
https://doi.org/10.1016/j.chiabu.2020.104755. 489 

[20] B. Long, J.E. Fan, M.C. Frank, Drawings as a window into developmental changes in object 490 
representations, in: Proceedings of the 40th Annual Conference of the Cognitive Science 491 
Society., 2018. 492 

[21] J. Moon, M.-J. Kim, S.-O. Lee, Y. Yu, A deep learning model based on triplet losses for a 493 
similar child drawing selection algorithm, Journal of the Korea Industrial Information Systems 494 
Research 27 (2022) 1–9. https://doi.org/10.9723/jksiis.2022.27.1.001. 495 

[22] D. Pysal, S.J. Abdulkadir, S.R.M. Shukri, H. Alhussian, Classification of children’s drawing 496 
strategies on touch-screen of seriation objects using a novel deep learning hybrid model, 497 
Alexandria Engineering Journal 60 (2020) 115–129. 498 

[23] Y. Yuan, J. Huang, X. Ma, K. Yan, Children’s Drawing Psychological Analysis using Shallow 499 
Convolutional Neural Network, in: 2020 International Conferences on Internet of Things 500 
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, 501 
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE 502 
Congress on Cybermatics (Cybermatics), IEEE, 2020: pp. 692–698. 503 

[24] L. Martinet, C. Sueur, S. Hirata, J. Hosselet, T. Matsuzawa, M. Pelé, New indices to characterize 504 
drawing behavior in humans ( Homo sapiens ) and chimpanzees ( Pan troglodytes ), Scientific 505 
Reports 11 (2021) 3860. https://doi.org/10.1038/s41598-021-83043-0. 506 

[25] L. Torrey, J. Shavlik, Transfer Learning, in: Handbook of Research on Machine Learning 507 
Applications and Trends: Algorithms, Methods, and Techniques, IGI Global, 2010: pp. 242–264. 508 
https://doi.org/10.4018/978-1-60566-766-9.ch011. 509 

[26] K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image 510 
Recognition, arXiv:1409.1556 [Cs] (2015). http://arxiv.org/abs/1409.1556 (accessed November 511 
10, 2021). 512 

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, F.-F. Li, Imagenet: A large-scale hierarchical 513 
image database., In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), in: 514 
2009: pp. 248–255. http://dx.doi.org/10.1109/CVPR.2009.5206848. 515 

[28] A. Theodorus, M. Nauta, C. Seifert, Evaluating CNN interpretability on sketch classification, in: 516 
Twelfth International Conference on Machine Vision (ICMV 2019), SPIE, 2020: pp. 475–482. 517 
https://doi.org/10.1117/12.2559536. 518 

[29] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016: pp. 519 
770–778. 520 

[30] R.R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, D. Batra, Grad-CAM: Why did 521 
you say that?, arXiv:1611.07450 [Cs, Stat] (2017). http://arxiv.org/abs/1611.07450 (accessed 522 
April 26, 2022). 523 

[31] N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh, J. Reynolds, A. Melnikov, N. 524 
Kliushkina, C. Araya, S. Yan, Captum: A unified and generic model interpretability library for 525 
pytorch, arXiv Preprint arXiv:2009.07896 (2020). 526 

[32] B. Beltzung, L. Martinet, A.J. Macintosh, X. Meyer, J. Hosselet, M. Pelé, C. Sueur, To Draw Or 527 
Not To Draw: Understanding The Temporal Organization Of Drawing Behavior Using Fractal 528 
Analyses, Fractals 31 (2023) 2350009. 529 



[33] C. Sueur, L. Martinet, B. Beltzung, M. Pelé, Making drawings speak through mathematical 530 
metrics, Human Nature 33 (2022) 400–424. 531 

[34] J. Matthews, Children drawing: Are young children really scribbling?, Early Child Development 532 
and Care 18 (1984) 1–39. https://doi.org/10.1080/0300443840180101. 533 

[35] A. Schöttl, A light-weight method to foster the (Grad) CAM interpretability and explainability of 534 
classification networks, in: IEEE, 2020: pp. 348–351. 535 

[36] Q. Zhang, S.-C. Zhu, Visual interpretability for deep learning: a survey, Frontiers of Information 536 
Technology & Electronic Engineering 19 (2018) 27–39. 537 

[37] R. Baldy, Fais-moi un beau dessin: regarder le dessin de l’enfant, comprendre son évolution, In 538 
Press, 2011. 539 

[38] M. Carabantes, Black-box artificial intelligence: an epistemological and critical analysis, AI & 540 
Society 35 (2020) 309–317. 541 

[39] E. Duede, Deep learning opacity in scientific discovery, Philosophy of Science 90 (2023) 1089–542 
1099. 543 

[40] F. Faries, V. Raja, Black Boxes and Theory Deserts: Deep Networks and Epistemic Opacity in 544 
the Cognitive Sciences, (2022). 545 

[41] L. Eytan, D.L. Elkis-Abuhoff, Indicators of depression and self-efficacy in the PPAT drawings 546 
of normative adults, The Arts in Psychotherapy 40 (2013) 291–297. 547 
https://doi.org/10.1016/j.aip.2013.04.003. 548 

[42] J. Kim, S. Chung, Drawing Test Form for Depression: The Development of Drawing Tests for 549 
Predicting Depression Among Breast Cancer Patients, Psychiatry Investig 18 (2021) 879–888. 550 
https://doi.org/10.30773/pi.2021.0044. 551 

[43] T. Charman, S. Baron‐Cohen, Drawing development in autism: The intellectual to visual realism 552 
shift, British Journal of Developmental Psychology 11 (1993) 171–185. 553 
https://doi.org/10.1111/j.2044-835X.1993.tb00596.x. 554 

[44] A. Lee, R.P. Hobson, Drawing self and others: How do children with autism differ from those 555 
with learning difficulties?, British Journal of Developmental Psychology 24 (2006) 547–565. 556 
https://doi.org/10.1348/026151005X49881. 557 

[45] P. Bozzato, C. Longobardi, Cross-cultural evaluation of children’s drawings of gender role 558 
stereotypes in italian and cambodian students, Journal of Psychological and Educational 559 
Research 29 (2021) 97–115. 560 

 561 

 562 

FIGURES 563 

 564 

Figure 1. Examples of drawings to illustrate the variability in artistic expression across different 565 

age groups and conditions. Each column showcases drawings from distinct age categories: 3-566 

year-olds (a), 7-year-olds (b), and expert adults (c). Within the figure, two rows are used to 567 

differentiate the drawing conditions. The first row features drawings created under a free 568 

condition, where the participants had the liberty to draw whatever they chose, reflecting their 569 

spontaneous creativity and imagination. The second row displays drawings produced in a self-570 

portrait condition, where participants were asked to draw themselves, providing insight into 571 



their self-perception and ability to represent human features. This juxtaposition of ages and 572 

conditions offers a visual comparison of developmental progression in artistic skills and 573 

conceptual understanding from early childhood through to expert adult levels. 574 

 575 

Figure 2. Confusion matrix for the model that classifies drawings into 10 distinct categories. 576 

In this matrix, each cell represents the number of drawings that have been classified by the 577 

model. The column labels indicate the categories predicted by the model for these drawings, 578 

while the row labels denote the true categories to which the drawings actually belong. The 579 

diagonal cells, where the predicted category matches the true label, show the number of 580 

correctly classified drawings for each category. The off-diagonal cells reveal the instances of 581 

misclassification, where the model predicted a category different from the true category. This 582 

matrix provides a detailed view of the model’s performance across all categories, highlighting 583 

its accuracy and areas where confusion between categories occurs. 584 

Figure 3. Accuracy of various models trained to distinguish between children’s drawings and 585 

adults’ drawings. Each model, corresponding to different age groups of children, was trained 586 

multiple times — specifically, 10 iterations — to ensure reliability and to account for any 587 

variability in the training process. The graph plots the mean accuracy achieved by each of 588 

these models across their training iterations, providing a visual representation of how well 589 

each model performs in differentiating between the artistic expressions of children at various 590 

developmental stages and those of adults. This comparative analysis not only highlights the 591 

overall effectiveness of the models but also allows for the examination of how drawing 592 

characteristics and discernibility evolve with age. 593 

Figure 4. mean prediction values for each model across various age categories, with separate 594 

analyses for (a) RGB and (b) grayscale models. These values stem from the models’ evaluations 595 

of drawings, reflecting the perceived similarity between drawings from different age groups 596 



and the target categories defined by the models (children vs. adults). The provided matrices 597 

offer a quantifiable measure of this similarity, where each cell denotes the average model 598 

prediction for drawings belonging to a specific age group. For instance, an analysis of the RGB 599 

matrix (a) first row allows us to understand how the model distinguishes between drawings by 600 

4 to 10-year-olds, 2 to 3-year-olds, and adults. Comparison values range from 0, indicating that 601 

drawings from the examined age category are more similar to those of 2 to 3-year-olds, to 1, 602 

suggesting closer similarity to adult drawings. Specifically, on the first row’s second-coloured 603 

row, a mean prediction value of 0.84 for drawings by 5-year-olds implies that, on average, the 604 

model perceives these drawings as more similar to adult drawings (closer to 1) than to those of 605 

younger children (further from 0). This interpretation of the matrices facilitates a detailed 606 

understanding of how the models discern differences and similarities in drawings across age 607 

groups, effectively quantifying the developmental progression in drawing skills from the 608 

perspective of the models’ classifications. 609 

 610 

Figure 5. Visual exploration of Grad-CAM (Gradient-weighted Class Activation Mapping) 611 

heatmaps for drawings from the validation set of different models, showcasing how the model 612 

focuses on specific areas of the drawings to make its classifications. Grad-CAM is a technique 613 

used to highlight the regions of an input image that are important for predictions from a 614 

convolutional neural network model. Panel a) features a heatmap overlay on a drawing by a 5-615 

year-old, analysed within the 4–5 years-old model framework. Despite the drawing being 616 

incorrectly classified as an adult’s work with a predicted value of 0.6885, the heatmap 617 

interestingly highlights the face as a significant feature for its decision, indicating the model’s 618 

reliance on facial features for classification, even though the overall prediction was inaccurate. 619 

Panel c) presents a heatmap for a drawing by a 10-year-old, evaluated by the 9–10 years-old 620 

model. This drawing is correctly classified, yet the heatmap appears nonsensical, failing to 621 



highlight discernible features that justify its classification. This suggests that while the model’s 622 

prediction was correct, the rationale behind its focus is unclear, raising questions about the 623 

interpretability of the model’s decision-making process. The heatmaps for correctly classified 624 

adults’ drawings, as seen in panels b) and d) and computed using the 2–3 years-old model, 625 

demonstrate varying degrees of focus. In b), the heatmap seems to concentrate on specific 626 

features, possibly contributing to a high-confidence prediction. Conversely, in d), despite a high 627 

prediction value, the heatmap does not highlight any particular feature, indicating that the 628 

model’s decision-making process might not always align with human-intuitive feature 629 

recognition. These examples illustrate the complexity and variability in how deep learning 630 

models interpret and classify drawings. While Grad-CAM heatmaps offer valuable insights into 631 

the regions of interest that models use for their predictions, the interpretability of these visual 632 

explanations can vary significantly, from being seemingly logical to puzzling, highlighting the 633 

challenges in understanding and improving model accuracy and reliability. 634 

 635 

Figure 6. Examples of Captum recognition, where black pixels represent elements deemed 636 

most important in the models’ age classification. (a) and (b) showcase instances where faces 637 

are accurately recognised. (c) illustrates an example where the body, but not the face, is 638 

identified. (d) highlights the significance of the eye in a wolf’s drawing. (e) displays 639 

Captum’s analysis of a scribble. (f) demonstrates a drawing with multiple faces, of which only 640 

two are identified. (g) exhibits an example where three faces are melded or overlapped with 641 

other elements, posing a challenge for recognition. (h) shows a case where a cat’s face is not 642 

recognised. (i) depicts an example where flowers are identified as the most important 643 

elements by Captum. 644 

 645 
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