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Abstract: Drawings serve as a profound medium of expression for both humans and apes, 17 

offering unique insights into the cognitive and emotional landscapes of the artists, regardless 18 

of their species. This study employs artificial intelligence (AI), specifically Convolutional 19 

Neural Networks (CNNs) and the interpretability tool Captum, to analyze non-figurative 20 

drawings by Molly, an orangutan. The research utilizes VGG19 and ResNet18 models to 21 
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decode seasonal nuances in the drawings, achieving notable accuracy in seasonal 22 

classification and revealing complex influences beyond human-centric methods. Techniques 23 

such as occlusion, integrated gradients, PCA, t-SNE, and Louvain clustering highlight critical 24 

areas and elements influencing seasonal recognition, providing deeper insights into the 25 

drawings. This approach not only advances the analysis of non-human art but also 26 

demonstrates the potential of AI to enrich our understanding of non-human cognitive and 27 

emotional expressions, with significant implications for fields like evolutionary anthropology 28 

and comparative psychology. 29 

Keywords: deep learning, non-human primates, primatology, apes, explicability  30 



 

1. Introduction 31 

The potential for anthropocentric bias emerges when deciphering the content of drawings, a 32 

common focus in studies of figurative artwork. However, meanings also permeate non-33 

figurative sketches, as evidenced in creations by young children (Gardner 1981; Goodnow 34 

2013; Restoy et al. 2022). Drawings are rich in information, yet reliance on a limited set of 35 

manually selected features can restrict the depth of analysis. This is especially pertinent in 36 

examining drawings by non-human primates, where an anthropocentric selection bias may 37 

overlook features significant to other species (Saito et al. 2014; Martinet and Pelé 2021). 38 

Consequently, such an approach fails to harness the full informational value of these 39 

drawings. In human contexts, querying the artist about their intent offers a partial solution 40 

(Martinet et al. 2021; Sueur et al. 2022), though this method falls short when artists cannot 41 

verbally articulate their intentions, such as in the scribbles of young children or individuals 42 

with communication impairments. This limitation extends to non-verbal non-human drawers 43 

like non-human primates (Pelé et al. 2021; Martinet et al. 2023). 44 

In a previous study, we employed artificial intelligence to scrutinize the artwork of Molly, a 45 

female orangutan who produced 1,299 drawings as part of a behavioral enrichment program 46 

at Tama Zoo in Japan until her passing in 2011 (Pelé et al. 2021). Previous research on 47 

Molly’s drawings revealed influences from her caretaker’s identity and daily events, like the 48 

birth of peers (Hanazuka et al. 2019). Traditional ethological approaches were used to 49 

distinguish changes in Molly’s drawings over time and seasonal variations, noting preferences 50 

for certain colors and line styles across different seasons. However, these manual feature 51 

extraction methods, focused on elements commonly analyzed in children’s drawings, such as 52 

loops and circles, might not align with orangutan perception (Kellogg 1969). Deep learning, 53 

leveraging artificial neural networks (Jacob et al. 2021), offers a robust alternative for image 54 

analysis, excelling in tasks like microscopy image classification (Buetti-Dinh et al. 2019) and 55 



 

disease diagnosis (Zhou et al. 2021) without the need for predefined features. Convolutional 56 

Neural Networks (CNNs), a prevalent deep learning tool in image analysis, autonomously 57 

learn to identify relevant features, evolving from simple shapes to complex objects through 58 

layers. While CNNs enhance accuracy, they struggle with interpretability, prompting the 59 

development of techniques to demystify model decisions (Zhang and Zhu 2018; Carabantes 60 

2020). 61 

Artificial intelligence’s application to drawing behavior remains very little explored (Beltzung 62 

et al. 2023), despite its success in classification tasks, like identifying stroke patterns (Wu et 63 

al. 2018) or categorizing drawings by object (Zhang et al. 2016). Our prior study in 2022 64 

(Beltzung et al. 2022) harnessed AI to examine seasonal trends in Molly’s artwork, utilizing 65 

the VGG19 (Dutta et al. 2016) model for seasonal classification, achieving a 41.6% accuracy. 66 

We explored how different features, from simple to complex, influenced these seasonal 67 

variations, highlighting the roles of color and pattern. We found with deep learning models 68 

similar results that we found using classical measures in ethology and drawing analyses. The 69 

research underscored deep learning’s potential to objectively analyze non-figurative art, 70 

encouraging its application beyond primates to include human toddler scribbles. However, it 71 

was impossible to open the black-box and to fully decipher and interpret the mechanisms 72 

through which the deep learning model identifies and classifies elements within the drawings.  73 

Here, we used interpretability and explicability models to reach this aim (Zhang and Zhu 74 

2018; Spannaus et al. 2023). Interpretability in deep learning refers to the ability to 75 

understand and explain the decision-making process of deep neural networks. Deep learning 76 

models are often considered black boxes because they lack transparency and it is difficult to 77 

comprehend how they arrive at their predictions (Shwartz-Ziv and Tishby 2017; Carabantes 78 

2020). Captum (Kokhlikyan et al. 2020) is a novel, unified, open-source model 79 

interpretability library for PyTorch. It contains implementations of various gradient and 80 



 

perturbation-based attribution algorithms for both classification and non-classification 81 

models, including graph-structured models built on Neural Networks (NN). Captum 82 

emphasizes multimodality, extensibility, and ease of use. It supports different modalities of 83 

inputs such as image, text, audio, or video, and allows the addition of new algorithms and 84 

features. Captum also introduces an interactive visualization tool called Captum Insights, 85 

which enables sample-based model debugging and visualization using feature importance 86 

metrics. Integrating Captum into our study enhances the explicability further by providing a 87 

comprehensive toolkit for model interpretability. Captum supports various interpretability 88 

algorithms, including Occlusion and Integrated gradients (Selvaraju et al. 2017), allowing 89 

researchers to not only visualize important regions but also understand the attribution of each 90 

input feature to the model’s output. By applying Captum’s visualizations on the validation 91 

data for our model, we can gain deeper insights into the discriminative features recognized by 92 

the models. This integration will facilitate a more nuanced understanding of model 93 

predictions, particularly in complex cases where direct interpretation of features is not 94 

straightforward. At our knowledge, this is the first time that Captum is applied to drawing and 95 

artwork. 96 

2. Materials and Methods 97 

2.1. Dataset 98 

The dataset comprises 1,299 drawings created by Molly, a female orangutan who began 99 

drawing around the age of 50, from 2006 to 2011. Molly, who seldom interacted with her 100 

group members, had a daily routine: spending mornings in an enclosure (either indoors or 101 

outdoors) and afternoons in a restroom equipped with crayons, allowing her to draw at her 102 

leisure for about 2 to 3 hours, producing 1–2 drawings each day. She indicated the end of a 103 

drawing session by placing the drawing materials on the floor. She was given paperboard and 104 



 

crayons daily, but as the drawing activity was not initially aimed at studying her drawing 105 

behavior, only minimal metadata were recorded. The exact dates of the drawings, marking the 106 

only external information, enabled categorization into seasons: autumn (374 drawings), 107 

summer (284), spring (269), and winter (372). The drawings were adjusted to square shapes 108 

and resized to 224x224 pixels for analysis. The dataset was divided into training (907 images) 109 

and validation sets (392 images), with seasonal distribution as follows: autumn (28.8%), 110 

spring (20.7%), summer (21.9%), and winter (28.6%). For additional information on Molly 111 

and her artwork, see references (Hanazuka et al. 2019; Pelé et al. 2021). 112 

2.2. Convolutional Neural Network (CNN) 113 

Acknowledging that human-selected features might not capture the intricate details in 114 

drawings, our study focused on deep learning, particularly convolutional neural networks 115 

(CNNs). Initially, we trained CNNs, specifically VGG19 (Beltzung et al. 2022) and ResNet 116 

18 (Liang 2020), to predict the seasons depicted in drawings by Molly. To address the 117 

limitations of our dataset’s size, we utilized transfer learning, repurposing models pre-trained 118 

on different tasks. This method enabled us to leverage the capabilities of ResNet18 and 119 

VGG19, both pre-trained with ImageNet weights, enhancing our analysis. ResNet18 is 120 

renowned for its efficiency and depth, achieved through residual learning, which we adapted 121 

for our study. This model’s architecture addresses the vanishing gradient problem with 122 

shortcut connections that bypass layers, facilitating the training of deeper networks. We 123 

applied this approach to both models, adjusting various parameters and hyperparameters, such 124 

as learning rate and the configuration of fully connected layers, to find the optimal setup. 125 

Each model’s final layer was a fully connected layer with four neurons, each representing a 126 

season, using softmax activation for classification. We employed a categorical cross-entropy 127 

loss function and optimized the models using stochastic gradient descent (SGD) with a 128 



 

learning rate of 0.1 and a batch size of 16. Performance was evaluated through early stopping, 129 

based on validation set accuracy, ceasing training after no improvement over three epochs. To 130 

prevent overfitting, we froze the convolutional blocks and implemented data augmentation 131 

techniques, like horizontal and vertical flips, to improve model accuracy. 132 

2.3. Interpretability with Captum. 133 

Following the initial training and optimization of our convolutional neural network models 134 

using ResNet18 and VGG19 architectures, we applied advanced analytical techniques to 135 

further interpret the deep learning model’s decisions and to gain insights into the features 136 

influencing the classification of seasons in Molly’s drawings. These techniques included the 137 

use of Captum (Kokhlikyan et al. 2020) and Scikit learn (Kramer and Kramer 2016; Bisong 138 

and Bisong 2019; Hao and Ho 2019) for model interpretability, dimensionality reduction, and 139 

clustering algorithms.  140 

Captum – Occlusion: We utilized the Occlusion method from Captum, a model 141 

interpretability library for PyTorch (Stevens et al. 2020; Imambi et al. 2021), to understand 142 

the impact of different regions of the drawing on the model’s prediction (figure 1). By 143 

systematically occluding parts of the input image and observing the effect on the model’s 144 

output, we could identify which areas of the drawings were most significant for determining 145 

the season. This method helps in pinpointing the ‘positive’ pixels or regions that contribute 146 

most to the classification decision.  147 

Average Number of Positive Pixels Per Season: Building on the occlusion analysis, we 148 

calculated the average number of positive pixels per season. This step involved aggregating 149 

the pixels that positively influenced the model’s seasonal classification across all drawings 150 

attributed to a specific season. By analyzing these averages, we aimed to discover seasonal 151 



 

patterns or features that were consistently influential across Molly’s drawings, providing a 152 

quantitative measure of the visual elements most associated with each season (figure 1). 153 

 154 

Figure 1: Seasonal Examples of Occlusion Analysis Using Captum Across Various Pixel 155 

Sizes. For each season, the sequence displays: the original drawing (top), followed by positive 156 

attribution (in green) highlighting pixels crucial for identification and classification, negative 157 

attribution (in red) indicating non-essential pixels, and finally, the differential attribution 158 

showcasing the contrast between positive and negative contributions. The top row represents a 159 

threshold (t) of 0, and the bottom row a threshold (t) of 0.5 for each depicted example. 160 

 161 

Captum – Integrated Gradients: We employed Integrated Gradients (Kwon et al. 2021), 162 

another interpretability technique from Captum, to attribute the prediction of the model to its 163 

input features (figure 2). This method offers a way to visualize the importance of each pixel in 164 



 

the original drawing for the classification decision. By highlighting the pixels and regions 165 

within the drawings that had the most significant impact on the model’s prediction, Integrated 166 

Gradients provided a deeper understanding of the model’s behavior and the features it deemed 167 

important. 168 

 169 

Figure 2: Integrated Gradients Analysis Using Captum. This illustration juxtaposes the 170 

original drawing on the left with its positive attribution on the right, where black denotes the 171 

pixels of utmost importance for classification. 172 

 173 

Removal of the Linear Layer from the Network: To explore the features extracted by the CNN 174 

in a more interpretable form, we removed the final linear (fully connected) layer of the 175 

network. This allowed us to access the raw features extracted by the convolutional layers 176 

directly, which represent a high-level abstraction of the drawings. 177 

Application of PCA / t-SNE in Scikit learn: With the linear layer removed and raw features 178 

extracted, we applied Principal Component Analysis (PCA) (Holland 2008) and t-Distributed 179 

Stochastic Neighbor Embedding (t-SNE) (Van der Maaten and Hinton 2008; Wattenberg et al. 180 

2016) for dimensionality reduction. These techniques reduced the high-dimensional feature 181 

space into a two- or three-dimensional space, making it possible to visualize the distribution 182 



 

and relationships between different drawings. This visualization helped us to observe patterns 183 

and clusters within the data, potentially revealing intrinsic similarities between drawings of 184 

the same season or identifying outliers. 185 

Clustering (Louvain Algorithm): Finally, we applied the Louvain algorithm (Combe et al. 186 

2015; Emmons et al. 2016) for clustering the drawings based on their reduced-dimensional 187 

features. The Louvain algorithm is a community detection method known for its efficiency in 188 

large networks. By clustering the drawings, we aimed to discover natural groupings within the 189 

data, which could indicate distinct styles, motifs, or themes recurring across different seasons. 190 

This unsupervised learning approach provided a bottom-up perspective on the dataset, 191 

potentially uncovering new insights into Molly’s drawing behavior and how it varied with the 192 

seasons. 193 

Through the application of these advanced techniques, our study sought to deepen the analysis 194 

of non-human drawing, leveraging the power of deep learning and interpretability tools to 195 

uncover the nuances of seasonal variation in Molly’s productions. 196 

 197 

2.4. Statistical analyses 198 

In our analysis, we employed the occlusion process to identify the most significant pixel in 199 

each drawing. This pixel was evaluated based on several criteria: its positional deviation from 200 

the center of the cardboard, the presence of lines, the variety and intensity of colors present, 201 

the total number of distinct colors, and the presence of additional elements. These elements 202 

included the cardboard backing, any signs of moisture damage, and traces not intended for 203 

drawing, as well as any tears or damage at the specific pixel’s location. 204 

Subsequently, we conducted a Kruskal-Wallis test for each of these dependent variables, with 205 

the season acting as the independent variable. This non-parametric test was chosen to 206 



 

determine if there were statistically significant differences across the seasons. The analysis 207 

was performed using the R statistical software, with a significance level set at α = 0.05. 208 

Image analyses are available at https://doi.org/10.5281/zenodo.10973649. All codes are 209 

available at https://github.com/cedricsueur/drawinganalyses 210 

3. Results 211 

3.1. CNNs: VGG19 and ResNet18. 212 

The VGG19 model trained to classify drawings according to seasons achieved 42% accuracy 213 

on the test set. The ResNet18 reached an accuracy a bit higher of 50%. These accuracies are 214 

higher than that expected by random (approximately 29%, by always classifying drawings as 215 

the most common class). To provide further context, the same models were also tasked with 216 

differentiating between drawings by Molly and humans drawings. In this classification 217 

challenge, both models demonstrated a remarkable accuracy higher than 93%. Additionally, 218 

when the model was retrained for a binary classification task—distinguishing between 219 

drawings with low and high coverage by Molly—it achieved an even accuracy higher than 220 

95%. These outcomes suggest that the model is highly capable of distinguishing between 221 

drawings when the distinctions are pronounced. Consequently, the relatively modest accuracy 222 

in the seasonal classification task likely stems from the more nuanced differences present 223 

among Molly’s drawings across different seasons. 224 

3.2. Captum Occlusion and integrated gradients 225 

Expanding upon our occlusion analysis, we computed the average number of positive pixels 226 

for each season, which are pixels crucial for correctly identifying the season depicted in the 227 

drawings. Our comparison across seasons, accounting for varying degrees of occlusion, 228 



 

revealed that independent of pixel size, Winter and Spring drawings consistently had a higher 229 

count of significant pixels for accurate season identification than those from Summer and 230 

Autumn. While we also explored the use of Integrated Gradients as an interpretive tool, this 231 

method proved less definitive than Occlusion in providing clear insights. Consequently, we 232 

chose not to pursue further analysis with Integrated Gradients, focusing instead on the more 233 

revealing outcomes derived from the occlusion technique. 234 

Our analysis revealed that 78.5% of the pixel identified as most significant per drawing 235 

contained markings attributable to the ape’s drawing activities. In contrast, the average area 236 

covered by markings on the paperboard for Molly was approximately 60%. Notably, the 237 

positional data of these key pixel per drawing exhibited seasonal variation (Kruskal-Wallis 238 

chi-squared = 16.721, df = 3, p-value = 0.0008064), with pixels from drawings made in 239 

Autumn tending to be more centrally located compared to those from Spring and Winter 240 

(figure 3). However, when examining other characteristics of the most significant pixel per 241 

drawing —such as the number of colors present, specific colors used, and the presence of 242 

additional marks or traces—no seasonal differences were observed (Kruskal-Wallis chi-243 

squared < 6.7164, df = 3, p-value > 0.08151).  244 

 245 



 

Figure 3: Comparative Analysis of Positive Attribution Pixel Counts. This graph presents the 246 

average number of pixels significant for seasonal drawing classification at two thresholds: t=0 247 

(indicating smaller pixels) and t=0.5 (representing larger pixels), highlighting the role of pixel 248 

size in determining drawing classification importance. 249 

 250 

3.3. PCA and Louvain Clustering 251 

After the linear layer removed and raw features extracted, the Principal Component Analysis 252 

(PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) for dimensionality 253 

reduction did not reveal any clusters according to the season (figure 4). We obtained similar 254 

results with the Louvain clustering algorithm. However, it revealed two clusters, one with 255 

many drawings and one with a lower number of drawings (figure 4). The small cluster 256 

revealed to be a cluster with many second drawings, meaning drawings made the same day 257 

after a first one. These second drawings have much more lines than the first drawings but are 258 

also made at the back of the paperboard which is not white as its front. Surprisingly, despite 259 

these differences, these second drawings are correctly classified with the season by the 260 

models. 261 

 262 

 263 



 

Figure 4: PCA Two-Dimensional Visualization. This graph displays clusters identified 264 

through Louvain algorithm, with each color representing a different season, illustrating the 265 

distribution and grouping of seasonal variations within the PCA-reduced feature space. 266 

 267 

4. Discussion 268 

In synthesizing insights from our deep learning-based analysis of non-human drawings, 269 

particularly those by Molly the orangutan, with discussions on the interpretability of these 270 

models, several key themes and conclusions emerge that bridge the gap between traditional 271 

drawing analysis and advanced AI methodologies. The use of Captum (Kokhlikyan et al. 272 

2020) specifically for the analysis of drawings and artwork appears to be a novel application. 273 

While interpretability tools have been increasingly applied in various domains to understand 274 

the decision-making processes of AI models—ranging from healthcare and finance to 275 

autonomous vehicles and natural language processing—their application within the realm of 276 

art analysis, especially in studying non-human drawings, marks a pioneering step. As Nagel 277 

pointed out (Nagel 1980), it’s beyond human capability to fully understand the experience of 278 

being another animal. However, we believe that artificial intelligence can play a role in 279 

reducing the prevalence of biases. 280 

4.1. Deep Learning Models: VGG19 and ResNet18 281 

The performance disparities between VGG19 and ResNet18 in classifying seasonal variations 282 

in Molly’s drawings underline the nuanced nature of this task. While both models 283 

significantly outperform random chance, indicating an ability to detect some form of seasonal 284 

patterning, the modest accuracies highlight the challenge of discerning subtle distinctions 285 

within the drawings. The stark contrast in model performance when tasked with more defined 286 

classification problems, such as differentiating between non-human and human drawings or 287 



 

assessing drawing coverage, reinforces the notion that deep learning excels in identifying 288 

pronounced differences. This suggests that the complexity of seasonal variation in Molly’s 289 

drawings may encompass more intricate, less overt features that challenge the models’ 290 

classification capabilities. Indeed, Molly may change mood and personality across days, 291 

seasons and age affecting drawings (Hanazuka et al. 2019; Pelé et al. 2021) as other apes also 292 

having these activities (Martinet et al. 2023). 293 

4.2. Interpretability: Captum Occlusion and Integrated Gradients 294 

The employment of Captum’s interpretability tools, especially Occlusion, has shed light on 295 

the decision-making processes of our models, pinpointing certain pixels and areas as pivotal 296 

for recognizing different seasons in the drawings. This method enriches our grasp of the 297 

model’s perceptual focus, but it’s crucial to acknowledge a limitation: while we can identify 298 

which pixels influence seasonal classification, the underlying features leading to these 299 

distinctions remain less clear (Gilpin et al. 2018). The inherent challenge lies in discerning the 300 

specific attributes—be it color, texture, or shape—that these critical pixels represent, as the 301 

models do not explicitly reveal this.  302 

Opting for Occlusion over Integrated Gradients was driven by the former’s ability to yield 303 

more direct insights into the importance of various image regions for model predictions. 304 

However, this preference also brings to the fore the complexity of interpreting deep learning 305 

models. Even as Occlusion helps highlight influential regions within the drawings, it 306 

underscores a broader challenge in AI interpretability: understanding the ‘why’ behind the 307 

model’s reliance on these regions (Gilpin et al. 2018; Fan et al. 2021; Rudin et al. 2022; Li et 308 

al. 2022). 309 

This cautious approach to interpreting Occlusion results emphasizes the necessity of 310 

combining interpretability tools with domain expertise. By doing so, we can hypothesize 311 



 

about the features these critical pixels may correspond to, such as seasonal color palettes or 312 

thematic elements unique to certain times of the year. Yet, the exact nature of these features 313 

often requires further investigation, possibly through additional analytical techniques or cross-314 

referencing with domain-specific knowledge. 315 

4.3. PCA and Louvain Clustering 316 

The utilization of PCA, t-SNE, and Louvain clustering further extends the analytical depth of 317 

this study, revealing unexpected patterns such as the clustering of drawings based on 318 

sequential order rather than seasonal attributes. This finding suggests that Molly’s drawing 319 

behavior—and potentially that of other non-human artists—may be influenced by factors 320 

unrelated to season, such as the physical context of the drawing or the events of the day. The 321 

ability of the models to accurately classify these drawings despite such confounding factors 322 

speaks to the robustness of deep learning in extracting relevant features from complex data. 323 

4.4. Implications and Future Directions 324 

This study with the previous ones illustrates the complementary strengths of traditional 325 

drawing analysis and AI-driven methodologies as made in other domains (Soto and Adey 326 

2016; Lu et al. 2024). Where traditional analysis provides a framework for understanding the 327 

thematic and stylistic components of drawings, deep learning models offer a means to 328 

systematically and objectively analyze these components across large datasets. The 329 

intersection of these approaches, facilitated by interpretability tools like Captum, holds the 330 

promise of enriching our understanding of non-human art, offering nuanced insights that 331 

neither approach could achieve in isolation. However, it is needed to think and to build a 332 

framework to know how to work in complementary with traditional approaches and AI-driven 333 

approaches. 334 



 

The implications of this research extend beyond the specific case of Molly’s drawings, 335 

touching on broader themes in evolutionary anthropology, comparative psychology, and 336 

animal welfare. By applying deep learning to the study of non-verbal drawing behavior across 337 

different species, we can explore evolutionary trajectories of artistic expression and cognitive 338 

processes (Sueur and Pelé 2023). Additionally, the potential for deep learning to assist in the 339 

early detection of neurodegenerative diseases in apes presents a novel application of AI in 340 

enhancing animal welfare and healthcare (Pelé et al. 2021). 341 

In conclusion, the integration of deep learning into the analysis of non-human drawings not 342 

only challenges and expands the boundaries of traditional art analysis but also opens new 343 

avenues for interdisciplinary research. As we continue to refine these models and 344 

interpretability techniques, the potential for AI to deepen our understanding of the cognitive 345 

and emotional worlds of non-human artists becomes increasingly evident, promising insights 346 

into the universal language of art and expression. 347 
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 473 

Figure Captions 474 

Figure 1: Seasonal Examples of Occlusion Analysis Using Captum Across Various Pixel 475 

Sizes. For each season, the sequence displays: the original drawing (top), followed by positive 476 

attribution (in green) highlighting pixels crucial for identification and classification, negative 477 

attribution (in red) indicating non-essential pixels, and finally, the differential attribution 478 

showcasing the contrast between positive and negative contributions. The top row represents a 479 

threshold (t) of 0, and the bottom row a threshold (t) of 0.5 for each depicted example. 480 

Figure 2: Integrated Gradients Analysis Using Captum. This illustration juxtaposes the 481 

original drawing on the left with its positive attribution on the right, where black denotes the 482 

pixels of utmost importance for classification. 483 



 

Figure 3: Comparative Analysis of Positive Attribution Pixel Counts. This graph presents the 484 

average number of pixels significant for seasonal drawing classification at two thresholds: t=0 485 

(indicating smaller pixels) and t=0.5 (representing larger pixels), highlighting the role of pixel 486 

size in determining drawing classification importance. 487 

Figure 4: PCA Two-Dimensional Visualization. This graph displays clusters identified 488 

through Louvain algorithm, with each color representing a different season, illustrating the 489 

distribution and grouping of seasonal variations within the PCA-reduced feature space. 490 

 491 


